Pseudo-online classification of mental tasks

A. Benevides, T. Bastos, M. Sarcinelli-Filho
{"title":"Pseudo-online classification of mental tasks","authors":"A. Benevides, T. Bastos, M. Sarcinelli-Filho","doi":"10.1109/BRC.2011.5740659","DOIUrl":null,"url":null,"abstract":"This paper presents the classification of three mental tasks, using the electroencephalographic signal and simulating a real-time process. Three types of classifiers are compared: k-nearest neighbors, Linear Discriminant Analysis and feed-forward backpropagation Artificial Neural Networks. The mental tasks are the imagination of right or left hand movements and generation of words beginning with the same random letter. The real-time simulation uses the sliding window technique, and the feature extraction uses the Power Spectral Density. A reclassification model is proposed to stabilize the classifier, and the Sammon map is used to visualize the class separation. Finally, it is expected that the proposed method can be implemented in a brain-computer interface associated with a robotic wheelchair.","PeriodicalId":313030,"journal":{"name":"ISSNIP Biosignals and Biorobotics Conference 2011","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISSNIP Biosignals and Biorobotics Conference 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRC.2011.5740659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents the classification of three mental tasks, using the electroencephalographic signal and simulating a real-time process. Three types of classifiers are compared: k-nearest neighbors, Linear Discriminant Analysis and feed-forward backpropagation Artificial Neural Networks. The mental tasks are the imagination of right or left hand movements and generation of words beginning with the same random letter. The real-time simulation uses the sliding window technique, and the feature extraction uses the Power Spectral Density. A reclassification model is proposed to stabilize the classifier, and the Sammon map is used to visualize the class separation. Finally, it is expected that the proposed method can be implemented in a brain-computer interface associated with a robotic wheelchair.
心理任务的伪在线分类
本文利用脑电图信号对三种心理任务进行了分类,并对其进行了实时模拟。比较了三种分类器:k近邻、线性判别分析和前馈反向传播人工神经网络。心理任务是想象右手或左手的动作,并产生以随机字母开头的单词。实时仿真采用滑动窗口技术,特征提取采用功率谱密度技术。提出了一种重分类模型来稳定分类器,并使用Sammon映射来可视化分类分离。最后,期望所提出的方法可以在与机器人轮椅相关的脑机接口中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信