Dynamic Internet of Things Malware Detection Using Machine Learning (Work-in-Progress)

Jonathan Myers, T. Oh, William B. Crowe, Ohan Filbach, W. McDonnell, T. Ajmera, Young Ho Kim, J. Kim
{"title":"Dynamic Internet of Things Malware Detection Using Machine Learning (Work-in-Progress)","authors":"Jonathan Myers, T. Oh, William B. Crowe, Ohan Filbach, W. McDonnell, T. Ajmera, Young Ho Kim, J. Kim","doi":"10.1109/ICSSA45270.2018.00025","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) is widely used in industry, residential, and commercial sectors, and it is inevitable that IoT will continue to surround and enhance our everyday lives. Recently, IoT botnets became an increasingly destructive weapon against the Internet domain. Malware such as Mirai and Reaper have affected many industries and devices throughout the world. This paper provides a cohesive solution to protect consumer IoT devices using a cloud-based machine learning infrastructure with a dynamic on-site firewall.","PeriodicalId":223442,"journal":{"name":"2018 International Conference on Software Security and Assurance (ICSSA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Software Security and Assurance (ICSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSA45270.2018.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Internet of Things (IoT) is widely used in industry, residential, and commercial sectors, and it is inevitable that IoT will continue to surround and enhance our everyday lives. Recently, IoT botnets became an increasingly destructive weapon against the Internet domain. Malware such as Mirai and Reaper have affected many industries and devices throughout the world. This paper provides a cohesive solution to protect consumer IoT devices using a cloud-based machine learning infrastructure with a dynamic on-site firewall.
使用机器学习的动态物联网恶意软件检测(正在进行中)
物联网(IoT)广泛应用于工业,住宅和商业领域,物联网将不可避免地继续围绕并改善我们的日常生活。最近,物联网僵尸网络越来越成为针对互联网领域的破坏性武器。像Mirai和Reaper这样的恶意软件已经影响了全球许多行业和设备。本文提供了一个内聚的解决方案,使用基于云的机器学习基础设施和动态现场防火墙来保护消费者物联网设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信