Symbolic Bisimulations for Probabilistic Systems

Peng Wu, C. Palamidessi, Huimin Lin
{"title":"Symbolic Bisimulations for Probabilistic Systems","authors":"Peng Wu, C. Palamidessi, Huimin Lin","doi":"10.1109/QEST.2007.11","DOIUrl":null,"url":null,"abstract":"The paper introduces symbolic bisimulations for a simple probabilistic pi-calculus to overcome the infinite branching problem that still exists in checking ground bisimulations between probabilistic systems. Especially the definition of weak (symbolic) bisimulation does not rely on the random capability of adversaries and suggests a solution to the open problem on the axiomatization for weak bisimulation in the case of unguarded recursion. Furthermore, we present an efficient characterization of symbolic bisimulations for the calculus, which allows the \"on-the-fly\" instantiation of bound names and dynamic construction of equivalence relations for quantitative evaluation. This directly results in a local decision algorithm that can explore just a minimal portion of the state spaces of the probabilistic processes in question.","PeriodicalId":249627,"journal":{"name":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QEST.2007.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The paper introduces symbolic bisimulations for a simple probabilistic pi-calculus to overcome the infinite branching problem that still exists in checking ground bisimulations between probabilistic systems. Especially the definition of weak (symbolic) bisimulation does not rely on the random capability of adversaries and suggests a solution to the open problem on the axiomatization for weak bisimulation in the case of unguarded recursion. Furthermore, we present an efficient characterization of symbolic bisimulations for the calculus, which allows the "on-the-fly" instantiation of bound names and dynamic construction of equivalence relations for quantitative evaluation. This directly results in a local decision algorithm that can explore just a minimal portion of the state spaces of the probabilistic processes in question.
概率系统的符号双模拟
本文介绍了一种简单概率pi-微积分的符号双模拟,以克服概率系统间校验地面双模拟时仍然存在的无限分支问题。特别是弱(符号)双仿真的定义不依赖于对手的随机能力,并提出了一种解决无保护递归情况下弱双仿真公理化的开放问题的方法。此外,我们提出了微积分的符号双模拟的有效表征,它允许界名的“即时”实例化和定量评价的等效关系的动态构造。这直接导致局部决策算法只能探索所讨论的概率过程的最小部分状态空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信