Mas’ud Abdur Rosyid, Yusuf Suhaimi Daulay, Denden Mohamad Arifin, Ardian Infantono, Arief Suryadi Satyawan, Ema Ema, Raden Aditya Satria Nugraha
{"title":"Pengembangan Algoritma Pereduksi Noise Pada Point Cloud Data LiDAR Dua Dimensi Untuk Aplikasi Kendaraan Listrik Otonom Sederhana","authors":"Mas’ud Abdur Rosyid, Yusuf Suhaimi Daulay, Denden Mohamad Arifin, Ardian Infantono, Arief Suryadi Satyawan, Ema Ema, Raden Aditya Satria Nugraha","doi":"10.54706/senastindo.v3.2021.146","DOIUrl":null,"url":null,"abstract":"Penerapan teknologi LiDAR 2 dimensi (Light Detection And Rangging) terkadang terkendala oleh adanya anomaly data atau noise sehingga mempengaruhi keakuratan dalam mendeteksi objek yang sesungguhnya. Jika tidak diatasi dengan baik maka dapat menggangu operasional kerjanya, terlebih lagi jika diterapkan pada kendaraan listrik otonom. Oleh sebab itu perlu upaya untuk mereduksi noise yang diimplementasikan pada software pemroses data LiDAR. Pada penelitian ini dilakukan pengembangan teknologi pereduksi noise yang muncul pada point cloud data LiDAR dua dimensi. Adapun konsep yang diterapkan adalah pengembangan algoritma pengolahan data LiDAR secara sistematis. Desain algoritma ini berisikan visualiasi dari pendeteksian objek, penyimpanan point cloud data LiDAR sebagai informasi objek yang terdeteksi, serta metode pengurangan noise pada point cloud data LiDAR dua dimensi tersebut. Algoritma ini di realisasikan dalam bentuk software pada perangkat keras Raspberry Pi 4, dengan menggunakan bahasa pemrograman Python. Terdapat enam Algoritma yang digunakan untuk mereduksi atau menghilangkan noise, yaitu Algoritma 1, Algoritma 2, Algoritma 3, Algoritma 4, Algoritma 5, Algoritma 6. Hasil percobaan memperlihatkan bahwa dari keenam Algoritma yang di buat mampu menampilkan visualisasi data berdasarkan sistem pemetaan 2 dimensi yang terkoreksi dari noise. Keenam Algoritma tersebut berhasil menyeleksi noise hingga 100%, meskipun kurang lebih 80% data yang dianggap benar tidak dapat disajikan. Meskipun hanya dengan 20% data benar, namun struktur objek masih dapat dikenali.","PeriodicalId":142905,"journal":{"name":"Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (SENASTINDO)","volume":"07 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (SENASTINDO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54706/senastindo.v3.2021.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Penerapan teknologi LiDAR 2 dimensi (Light Detection And Rangging) terkadang terkendala oleh adanya anomaly data atau noise sehingga mempengaruhi keakuratan dalam mendeteksi objek yang sesungguhnya. Jika tidak diatasi dengan baik maka dapat menggangu operasional kerjanya, terlebih lagi jika diterapkan pada kendaraan listrik otonom. Oleh sebab itu perlu upaya untuk mereduksi noise yang diimplementasikan pada software pemroses data LiDAR. Pada penelitian ini dilakukan pengembangan teknologi pereduksi noise yang muncul pada point cloud data LiDAR dua dimensi. Adapun konsep yang diterapkan adalah pengembangan algoritma pengolahan data LiDAR secara sistematis. Desain algoritma ini berisikan visualiasi dari pendeteksian objek, penyimpanan point cloud data LiDAR sebagai informasi objek yang terdeteksi, serta metode pengurangan noise pada point cloud data LiDAR dua dimensi tersebut. Algoritma ini di realisasikan dalam bentuk software pada perangkat keras Raspberry Pi 4, dengan menggunakan bahasa pemrograman Python. Terdapat enam Algoritma yang digunakan untuk mereduksi atau menghilangkan noise, yaitu Algoritma 1, Algoritma 2, Algoritma 3, Algoritma 4, Algoritma 5, Algoritma 6. Hasil percobaan memperlihatkan bahwa dari keenam Algoritma yang di buat mampu menampilkan visualisasi data berdasarkan sistem pemetaan 2 dimensi yang terkoreksi dari noise. Keenam Algoritma tersebut berhasil menyeleksi noise hingga 100%, meskipun kurang lebih 80% data yang dianggap benar tidak dapat disajikan. Meskipun hanya dengan 20% data benar, namun struktur objek masih dapat dikenali.