Daily Mental Health Monitoring from Speech: A Real-World Japanese Dataset and Multitask Learning Analysis

Meishu Song, Andreas Triantafyllopoulos, Zijiang Yang, Hiroki Takeuchi, Toru Nakamura, A. Kishi, Tetsuro Ishizawa, K. Yoshiuchi, Xin Jing, Vincent Karas, Zhonghao Zhao, Kun Qian, B. Hu, B. Schuller, Yoshiharu Yamamoto
{"title":"Daily Mental Health Monitoring from Speech: A Real-World Japanese Dataset and Multitask Learning Analysis","authors":"Meishu Song, Andreas Triantafyllopoulos, Zijiang Yang, Hiroki Takeuchi, Toru Nakamura, A. Kishi, Tetsuro Ishizawa, K. Yoshiuchi, Xin Jing, Vincent Karas, Zhonghao Zhao, Kun Qian, B. Hu, B. Schuller, Yoshiharu Yamamoto","doi":"10.1109/ICASSP49357.2023.10096884","DOIUrl":null,"url":null,"abstract":"Translating mental health recognition from clinical research into real-world application requires extensive data, yet existing emotion datasets are impoverished in terms of daily mental health monitoring, especially when aiming for self-reported anxiety and depression recognition. We introduce the Japanese Daily Speech Dataset (JDSD), a large in-the-wild daily speech emotion dataset consisting of 20,827 speech samples from 342 speakers and 54 hours of total duration. The data is annotated on the Depression and Anxiety Mood Scale (DAMS) – 9 self-reported emotions to evaluate mood state including \"vigorous\", \"gloomy\", \"concerned\", \"happy\", \"unpleasant\", \"anxious\", \"cheerful\", \"depressed\", and \"worried\". Our dataset possesses emotional states, activity, and time diversity, making it useful for training models to track daily emotional states for healthcare purposes. We partition our corpus and provide a multi-task benchmark across nine emotions, demonstrating that mental health states can be predicted reliably from self-reports with a Concordance Correlation Coefficient value of .547 on average. We hope that JDSD will become a valuable resource to further the development of daily emotional healthcare tracking.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"379 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10096884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Translating mental health recognition from clinical research into real-world application requires extensive data, yet existing emotion datasets are impoverished in terms of daily mental health monitoring, especially when aiming for self-reported anxiety and depression recognition. We introduce the Japanese Daily Speech Dataset (JDSD), a large in-the-wild daily speech emotion dataset consisting of 20,827 speech samples from 342 speakers and 54 hours of total duration. The data is annotated on the Depression and Anxiety Mood Scale (DAMS) – 9 self-reported emotions to evaluate mood state including "vigorous", "gloomy", "concerned", "happy", "unpleasant", "anxious", "cheerful", "depressed", and "worried". Our dataset possesses emotional states, activity, and time diversity, making it useful for training models to track daily emotional states for healthcare purposes. We partition our corpus and provide a multi-task benchmark across nine emotions, demonstrating that mental health states can be predicted reliably from self-reports with a Concordance Correlation Coefficient value of .547 on average. We hope that JDSD will become a valuable resource to further the development of daily emotional healthcare tracking.
每日心理健康监测:一个真实世界的日语数据集和多任务学习分析
将心理健康识别从临床研究转化为现实世界的应用需要大量的数据,而现有的情绪数据集在日常心理健康监测方面非常贫乏,特别是在针对自我报告的焦虑和抑郁识别方面。我们介绍了日本日常语音数据集(JDSD),这是一个大型的野外日常语音情感数据集,由来自342位说话者的20,827个语音样本组成,总持续时间为54小时。数据标注在抑郁和焦虑情绪量表(DAMS)上——9种自我报告的情绪,以评估情绪状态,包括“积极”、“沮丧”、“担心”、“快乐”、“不愉快”、“焦虑”、“愉快”、“沮丧”和“担心”。我们的数据集拥有情绪状态、活动和时间多样性,这使得它可以用于训练模型来跟踪医疗保健目的的日常情绪状态。我们对语料库进行了划分,并提供了九种情绪的多任务基准,表明心理健康状态可以从自我报告中可靠地预测,其一致性相关系数平均为0.547。我们希望JDSD能够成为进一步发展日常情绪健康跟踪的宝贵资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信