{"title":"QMA/qpoly /spl sube/ PSPACE/poly: de-Merlinizing quantum protocols","authors":"S. Aaronson","doi":"10.1109/CCC.2006.36","DOIUrl":null,"url":null,"abstract":"This paper introduces a new technique for removing existential quantifiers over quantum states. Using this technique, we show that there is no way to pack an exponential number of bits into a polynomial-size quantum state, in such a way that the value of any one of those bits can later be proven with the help of a polynomial-size quantum witness. We also show that any problem in QMA with polynomial-size quantum advice, is also in PSPACE with polynomial-size classical advice. This builds on our earlier result that BQP/qpoly sube PP/poly, and offers an intriguing counterpoint to the recent discovery of Raz that QIP/qpoly = ALL. Finally, we show that QCMA/qpoly sube PP/poly and that QMA/rpoly = QMA/poly","PeriodicalId":325664,"journal":{"name":"21st Annual IEEE Conference on Computational Complexity (CCC'06)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st Annual IEEE Conference on Computational Complexity (CCC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2006.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
This paper introduces a new technique for removing existential quantifiers over quantum states. Using this technique, we show that there is no way to pack an exponential number of bits into a polynomial-size quantum state, in such a way that the value of any one of those bits can later be proven with the help of a polynomial-size quantum witness. We also show that any problem in QMA with polynomial-size quantum advice, is also in PSPACE with polynomial-size classical advice. This builds on our earlier result that BQP/qpoly sube PP/poly, and offers an intriguing counterpoint to the recent discovery of Raz that QIP/qpoly = ALL. Finally, we show that QCMA/qpoly sube PP/poly and that QMA/rpoly = QMA/poly