Using images to avoid collisions and bypass obstacles in indoor environments

David Silva de Medeiros, Thiago Henrique Araújo, Elias Teodoro da Silva Júnior, G. Ramalho
{"title":"Using images to avoid collisions and bypass obstacles in indoor environments","authors":"David Silva de Medeiros, Thiago Henrique Araújo, Elias Teodoro da Silva Júnior, G. Ramalho","doi":"10.5753/sibgrapi.est.2021.20030","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Network (CNN) has contributed a lot to the advancement of autonomous navigation techniques, and such systems can be adapted to facilitate the movement of robots and visually impaired people. This work presents an approach that uses images to avoid collisions and bypass obstacles in indoor environments. The constructed dataset uses information from forward and lateral speeds during walks to determine collisions and obstacle avoidance. VGG16, ResNet50, and Dronet architectures were used to evaluate the dataset. Finally, reflections on the dataset characteristics are added, and the CNNs performance is presented.","PeriodicalId":110864,"journal":{"name":"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sibgrapi.est.2021.20030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional Neural Network (CNN) has contributed a lot to the advancement of autonomous navigation techniques, and such systems can be adapted to facilitate the movement of robots and visually impaired people. This work presents an approach that uses images to avoid collisions and bypass obstacles in indoor environments. The constructed dataset uses information from forward and lateral speeds during walks to determine collisions and obstacle avoidance. VGG16, ResNet50, and Dronet architectures were used to evaluate the dataset. Finally, reflections on the dataset characteristics are added, and the CNNs performance is presented.
利用图像在室内环境中避免碰撞和绕过障碍物
卷积神经网络(CNN)为自主导航技术的发展做出了巨大贡献,这种系统可以适应机器人和视障人士的运动。这项工作提出了一种在室内环境中使用图像来避免碰撞和绕过障碍物的方法。构建的数据集使用行走过程中向前和横向速度的信息来确定碰撞和避障。使用VGG16、ResNet50和Dronet架构对数据集进行评估。最后,加入对数据集特征的反射,给出cnn的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信