What is a multirate array?

P. Lenders, S. Rajopadhye
{"title":"What is a multirate array?","authors":"P. Lenders, S. Rajopadhye","doi":"10.1109/VLSISP.1994.574768","DOIUrl":null,"url":null,"abstract":"Multirate arrays (MRAs) are an extension of systolic arrays where different data variables are propagated with different clocks. Recently, synthesis methods for MRA synthesis, starting from Affine Recurrence Equations (AREs) have been proposed. In this paper we give a formal definition of MRAs as systems of Uniform Recurrence Equations (UREs) defined over sparse polyhedral domains. We then show a direct equivalence between the previously proposed synthesis methods and a simple index transformation of sparse UREs.","PeriodicalId":427356,"journal":{"name":"Proceedings of 1994 IEEE Workshop on VLSI Signal Processing","volume":"136 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE Workshop on VLSI Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSISP.1994.574768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multirate arrays (MRAs) are an extension of systolic arrays where different data variables are propagated with different clocks. Recently, synthesis methods for MRA synthesis, starting from Affine Recurrence Equations (AREs) have been proposed. In this paper we give a formal definition of MRAs as systems of Uniform Recurrence Equations (UREs) defined over sparse polyhedral domains. We then show a direct equivalence between the previously proposed synthesis methods and a simple index transformation of sparse UREs.
什么是多速率数组?
多速率阵列(MRAs)是收缩阵列的扩展,其中不同的数据变量用不同的时钟传播。近年来,人们提出了从仿射递推方程(AREs)出发的MRA合成方法。本文给出了在稀疏多面体域上定义的一致递推方程组的形式化定义。然后,我们证明了先前提出的综合方法与稀疏函数的简单索引变换之间的直接等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信