Michael Haidl, Michel Steuwer, H. Dirks, Tim Humernbrum, S. Gorlatch
{"title":"Towards Composable GPU Programming: Programming GPUs with Eager Actions and Lazy Views","authors":"Michael Haidl, Michel Steuwer, H. Dirks, Tim Humernbrum, S. Gorlatch","doi":"10.1145/3026937.3026942","DOIUrl":null,"url":null,"abstract":"In this paper, we advocate a composable approach to programming systems with Graphics Processing Units (GPU): programs are developed as compositions of generic, reusable patterns. Current GPU programming approaches either rely on low-level, monolithic code without patterns (CUDA and OpenCL), which achieves high performance at the cost of cumbersome and error-prone programming, or they improve the programmability by using pattern-based abstractions (e.g., Thrust) but pay a performance penalty due to inefficient implementations of pattern composition. We develop an API for GPUs based programming on C++ with STL-style patterns and its compiler-based implementation. Our API gives the application developers the native C++ means (views and actions) to specify precisely which pattern compositions should be automatically fused during code generation into a single efficient GPU kernel, thereby ensuring a high target performance. We implement our approach by extending the range-v3 library which is currently being developed for the forthcoming C++ standards. The composable programming in our approach is done exclusively in the standard C++14, with STL algorithms used as patterns which we re-implemented in parallel for GPU. Our compiler implementation is based on the LLVM and Clang frameworks, and we use advanced multi-stage programming techniques for aggressive runtime optimizations. We experimentally evaluate our approach using a set of benchmark applications and a real-world case study from the area of image processing. Our codes achieve performance competitive with CUDA monolithic implementations, and we outperform pattern-based codes written using Nvidia's Thrust.","PeriodicalId":161677,"journal":{"name":"Proceedings of the 8th International Workshop on Programming Models and Applications for Multicores and Manycores","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Workshop on Programming Models and Applications for Multicores and Manycores","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3026937.3026942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we advocate a composable approach to programming systems with Graphics Processing Units (GPU): programs are developed as compositions of generic, reusable patterns. Current GPU programming approaches either rely on low-level, monolithic code without patterns (CUDA and OpenCL), which achieves high performance at the cost of cumbersome and error-prone programming, or they improve the programmability by using pattern-based abstractions (e.g., Thrust) but pay a performance penalty due to inefficient implementations of pattern composition. We develop an API for GPUs based programming on C++ with STL-style patterns and its compiler-based implementation. Our API gives the application developers the native C++ means (views and actions) to specify precisely which pattern compositions should be automatically fused during code generation into a single efficient GPU kernel, thereby ensuring a high target performance. We implement our approach by extending the range-v3 library which is currently being developed for the forthcoming C++ standards. The composable programming in our approach is done exclusively in the standard C++14, with STL algorithms used as patterns which we re-implemented in parallel for GPU. Our compiler implementation is based on the LLVM and Clang frameworks, and we use advanced multi-stage programming techniques for aggressive runtime optimizations. We experimentally evaluate our approach using a set of benchmark applications and a real-world case study from the area of image processing. Our codes achieve performance competitive with CUDA monolithic implementations, and we outperform pattern-based codes written using Nvidia's Thrust.