{"title":"Acoustic emission signal-based non-destructive testing of carbon content of Pr-Nd alloys","authors":"Xinyu Chen, Xin-yu Wu, Feifei Liu, Bo-hua Zeng, Yuan-min Tu, Le-le Cao","doi":"10.1784/insi.2022.64.9.503","DOIUrl":null,"url":null,"abstract":"In the quality analysis of contemporary industrial production of praseodymium-neodymium (Pr-Nd) alloys, the amount of carbon content is mainly determined using chemical analysis methods. To overcome the shortcomings of the long durations and high costs of quality inspection cycles,\n this study proposes a non-destructive model for determining the carbon content of Pr-Nd alloys using acoustic emission signals collected using a mel frequency cepstral coefficient (MFCC) long short-term memory (LSTM) network (MFCC-LSTM) model and a data acquisition system. The MFCC ensures\n accurate signal feature extraction and data dimensionality reduction and the LSTM enables learning of the extracted features. The recognition rate of the MFCC-LSTM model reaches up to 97.53%, which can satisfy the quality inspection requirements for the industrial production of Pr-Nd alloys.\n In model evaluation, the receiver operating characteristic (ROC) curve shows good performance indices, indicating that the model is robust. Real-time verification of the model shows that the proposed method greatly shortens the time of each quality inspection link; the quality inspection time\n for a single piece of Pr-Nd alloy is only 0.3-0.65 s, which is a good real-time parameter.","PeriodicalId":344397,"journal":{"name":"Insight - Non-Destructive Testing and Condition Monitoring","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight - Non-Destructive Testing and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2022.64.9.503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In the quality analysis of contemporary industrial production of praseodymium-neodymium (Pr-Nd) alloys, the amount of carbon content is mainly determined using chemical analysis methods. To overcome the shortcomings of the long durations and high costs of quality inspection cycles,
this study proposes a non-destructive model for determining the carbon content of Pr-Nd alloys using acoustic emission signals collected using a mel frequency cepstral coefficient (MFCC) long short-term memory (LSTM) network (MFCC-LSTM) model and a data acquisition system. The MFCC ensures
accurate signal feature extraction and data dimensionality reduction and the LSTM enables learning of the extracted features. The recognition rate of the MFCC-LSTM model reaches up to 97.53%, which can satisfy the quality inspection requirements for the industrial production of Pr-Nd alloys.
In model evaluation, the receiver operating characteristic (ROC) curve shows good performance indices, indicating that the model is robust. Real-time verification of the model shows that the proposed method greatly shortens the time of each quality inspection link; the quality inspection time
for a single piece of Pr-Nd alloy is only 0.3-0.65 s, which is a good real-time parameter.