LitWay, Discriminative Extraction for Different Bio-Events

Chen Li, Zhiqiang Rao, Xiangrong Zhang
{"title":"LitWay, Discriminative Extraction for Different Bio-Events","authors":"Chen Li, Zhiqiang Rao, Xiangrong Zhang","doi":"10.18653/v1/W16-3004","DOIUrl":null,"url":null,"abstract":"Even a simple biological phenomenon may introduce a complex network of molecular interactions. Scientific literature is one of the trustful resources delivering knowledge of these networks. We propose LitWay, a system for extracting semantic relations from texts. LitWay utilizes a hybrid method that combines both a rule-based method and a machine learning-based method. It is tested on the SeeDev task of BioNLP-ST 2016, achieves the state-of-the-art performance with the F-score of 43.2%, ranking first of all participating teams. To further reveal the linguistic characteristics of each event, we test the system solely with syntactic rules or machine learning, and different combinations of two methods. We find that it is difficult for one method to achieve good performance for all semantic relation types due to the complication of bio-events in the literatures.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-3004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Even a simple biological phenomenon may introduce a complex network of molecular interactions. Scientific literature is one of the trustful resources delivering knowledge of these networks. We propose LitWay, a system for extracting semantic relations from texts. LitWay utilizes a hybrid method that combines both a rule-based method and a machine learning-based method. It is tested on the SeeDev task of BioNLP-ST 2016, achieves the state-of-the-art performance with the F-score of 43.2%, ranking first of all participating teams. To further reveal the linguistic characteristics of each event, we test the system solely with syntactic rules or machine learning, and different combinations of two methods. We find that it is difficult for one method to achieve good performance for all semantic relation types due to the complication of bio-events in the literatures.
不同生物事件的判别提取
即使是一个简单的生物现象也可能引入一个复杂的分子相互作用网络。科学文献是传递这些网络知识的可靠资源之一。我们提出了LitWay,一个从文本中提取语义关系的系统。LitWay采用了一种混合方法,结合了基于规则的方法和基于机器学习的方法。在BioNLP-ST 2016的SeeDev任务测试中,以43.2%的f分取得了最先进的成绩,在所有参赛团队中排名第一。为了进一步揭示每个事件的语言特征,我们单独使用语法规则或机器学习以及两种方法的不同组合来测试系统。我们发现,由于文献中生物事件的复杂性,一种方法很难对所有语义关系类型达到良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信