Application of Artificial Intelligence Detection System Based on Multi-sensor Data Fusion

Meifang Han
{"title":"Application of Artificial Intelligence Detection System Based on Multi-sensor Data Fusion","authors":"Meifang Han","doi":"10.3991/ijoe.v14i06.8696","DOIUrl":null,"url":null,"abstract":"<p class=\"0abstract\"><span lang=\"EN-US\">Aiming at <a name=\"_Hlk508710819\"></a>solving </span><span lang=\"EN-US\">the navigation and obstacle avoidance of the unmanned vehicle</span><span lang=\"EN-US\">,</span><span lang=\"EN-US\">the multi sensor data fusion technology</span><span lang=\"EN-US\"> and</span><span lang=\"EN-US\"> unmanned vehicle obstacle avoidance navigation algorithm </span><span lang=\"EN-US\">were</span><span lang=\"EN-US\"> studied</span><span lang=\"EN-US\"> profoundly. A</span><span lang=\"EN-US\">ccording to the requirements of the application of unmanned vehicle navigation and obstacle avoidance system, multi</span><span lang=\"EN-US\">sensor data fusion technology </span><span lang=\"EN-US\">wa</span><span lang=\"EN-US\">s applied to unmanned vehicle navigation and obstacle avoidance control system</span><span lang=\"EN-US\">. In addition,</span><span lang=\"EN-US\"> A*VFF navigation and obstacle avoidance algorithm </span><span lang=\"EN-US\">based on</span><span lang=\"EN-US\"> fuzzy neural network</span><span lang=\"EN-US\"> was</span><span lang=\"EN-US\"> improved</span><span lang=\"EN-US\">. F</span><span lang=\"EN-US\">inally</span><span lang=\"EN-US\">,</span><span lang=\"EN-US\"> through the construction of the simulation platform, simulation experiment</span><span lang=\"EN-US\"> of</span><span lang=\"EN-US\"> the unmanned vehicle obstacle avoidance navigation </span><span lang=\"EN-US\">was </span><span lang=\"EN-US\">completed, </span><span lang=\"EN-US\">and</span><span lang=\"EN-US\"> a better route</span><span lang=\"EN-US\"> was planned for </span><span lang=\"EN-US\">unmanned vehicl</span><span lang=\"EN-US\">e</span><span lang=\"EN-US\"> in a more complex environment</span><span lang=\"EN-US\">. The results showed that it</span><span lang=\"EN-US\"> realize</span><span lang=\"EN-US\">d</span><span lang=\"EN-US\"> the autonomous navigation of unmanned vehicle and obstacle avoidance function. </span><span lang=\"EN-US\">Based on the above findings, it is concluded that the application of artificial intelligence detection system has good performance.</span></p>","PeriodicalId":387853,"journal":{"name":"Int. J. Online Eng.","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Online Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v14i06.8696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Aiming at solving the navigation and obstacle avoidance of the unmanned vehicle,the multi sensor data fusion technology and unmanned vehicle obstacle avoidance navigation algorithm were studied profoundly. According to the requirements of the application of unmanned vehicle navigation and obstacle avoidance system, multisensor data fusion technology was applied to unmanned vehicle navigation and obstacle avoidance control system. In addition, A*VFF navigation and obstacle avoidance algorithm based on fuzzy neural network was improved. Finally, through the construction of the simulation platform, simulation experiment of the unmanned vehicle obstacle avoidance navigation was completed, and a better route was planned for unmanned vehicle in a more complex environment. The results showed that it realized the autonomous navigation of unmanned vehicle and obstacle avoidance function. Based on the above findings, it is concluded that the application of artificial intelligence detection system has good performance.

基于多传感器数据融合的人工智能检测系统应用
针对无人驾驶汽车的导航和避障问题,对多传感器数据融合技术和无人驾驶汽车避障导航算法进行了深入研究。根据无人驾驶汽车导航避障系统的应用需求,将多传感器数据融合技术应用于无人驾驶汽车导航避障控制系统。此外,对基于模糊神经网络的A*VFF导航避障算法进行了改进。最后,通过仿真平台的搭建,完成无人车避障导航的仿真实验,为无人车在更复杂的环境下规划更好的路线。结果表明,该系统实现了无人驾驶车辆的自主导航和避障功能。基于以上研究结果,得出应用人工智能检测系统具有良好性能的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信