Gray level enhancement to emphasize less dynamic region within image using genetic algorithm

Archana, Akhilesh Verma, Savita Goel, N. Kumar
{"title":"Gray level enhancement to emphasize less dynamic region within image using genetic algorithm","authors":"Archana, Akhilesh Verma, Savita Goel, N. Kumar","doi":"10.1109/IADCC.2013.6514393","DOIUrl":null,"url":null,"abstract":"Contrast enhancement plays an important role in image processing system. Enhancement is used to improve the appearance of an image and make it easier for visual interpretation, understanding and analysis of an image. Linear stretching and histogram equalization are the most common methods that are used for contrast enhancement, but the image that is enhanced by linear stretching or histogram equalization has bright and unnatural contrast. So we proposed a method that is based on genetic algorithm. This method enhances an image with natural contrast. In local contrast enhancement image can be enhanced using four parameters `a', `b', `c' and `k', where `a', `b', `c' and `k' are constants. We proposed a method in that the goal of contrast enhancement is achieved using these parameters with the new extension in their range. Local contrast enhancement increases the gray level of original image on the bases of light and dark edges. This proposed method has applied on m×n size of an original gray scale image. The local mean and local standard deviation of entire image, minimum value and maximum value of the image are used to statistically characterize digital image.","PeriodicalId":325901,"journal":{"name":"2013 3rd IEEE International Advance Computing Conference (IACC)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 3rd IEEE International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2013.6514393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Contrast enhancement plays an important role in image processing system. Enhancement is used to improve the appearance of an image and make it easier for visual interpretation, understanding and analysis of an image. Linear stretching and histogram equalization are the most common methods that are used for contrast enhancement, but the image that is enhanced by linear stretching or histogram equalization has bright and unnatural contrast. So we proposed a method that is based on genetic algorithm. This method enhances an image with natural contrast. In local contrast enhancement image can be enhanced using four parameters `a', `b', `c' and `k', where `a', `b', `c' and `k' are constants. We proposed a method in that the goal of contrast enhancement is achieved using these parameters with the new extension in their range. Local contrast enhancement increases the gray level of original image on the bases of light and dark edges. This proposed method has applied on m×n size of an original gray scale image. The local mean and local standard deviation of entire image, minimum value and maximum value of the image are used to statistically characterize digital image.
利用遗传算法对图像进行灰度增强,以强调图像中动态程度较低的区域
对比度增强在图像处理系统中起着重要的作用。增强是用来改善图像的外观,使其更容易在视觉上解释、理解和分析图像。线性拉伸和直方图均衡化是对比度增强最常用的方法,但通过线性拉伸或直方图均衡化增强的图像具有明亮和不自然的对比度。因此,我们提出了一种基于遗传算法的方法。这种方法增强了具有自然对比度的图像。在局部对比度增强图像中,可以使用a、b、c、k四个参数进行增强,其中a、b、c、k为常量。我们提出了一种利用这些参数在其范围内进行新的扩展来实现对比度增强目标的方法。局部对比度增强是在明暗边缘的基础上提高原始图像的灰度。该方法对原始灰度图像的m×n大小进行了应用。利用整幅图像的局部均值和局部标准差、图像的最小值和最大值对数字图像进行统计表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信