A possibilistic approach to sensor fusion in mobile robotics

P. Bison, G. Chemello, C. Sossai, G. Trainito
{"title":"A possibilistic approach to sensor fusion in mobile robotics","authors":"P. Bison, G. Chemello, C. Sossai, G. Trainito","doi":"10.1109/EURBOT.1997.633579","DOIUrl":null,"url":null,"abstract":"We present a formal method, based on the logic of possibility, to fuse uncertain sensory information and to produce an estimate of the position of a mobile robot. The robot navigates in an office environment, using a topological map, with the assistance of a \"slave\" robot acting as a portable local landmark. Each relevant place in the map is characterized by a set of logical formulae axiomatizing both \"crisp\" knowledge and uncertain information from the sensors. At each time instant during navigation, the necessity degree of each place is calculated using a purely syntactical method based on sequent calculus.","PeriodicalId":129683,"journal":{"name":"Proceedings Second EUROMICRO Workshop on Advanced Mobile Robots","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Second EUROMICRO Workshop on Advanced Mobile Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURBOT.1997.633579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present a formal method, based on the logic of possibility, to fuse uncertain sensory information and to produce an estimate of the position of a mobile robot. The robot navigates in an office environment, using a topological map, with the assistance of a "slave" robot acting as a portable local landmark. Each relevant place in the map is characterized by a set of logical formulae axiomatizing both "crisp" knowledge and uncertain information from the sensors. At each time instant during navigation, the necessity degree of each place is calculated using a purely syntactical method based on sequent calculus.
移动机器人传感器融合的一种可能性方法
我们提出了一种基于可能性逻辑的形式化方法来融合不确定的感官信息并产生移动机器人的位置估计。机器人在办公环境中导航,使用拓扑图,在“奴隶”机器人的帮助下,充当便携式当地地标。地图上的每个相关地点都有一组逻辑公式,这些逻辑公式将“清晰”的知识和来自传感器的不确定信息公理化。在导航过程中的每个时间瞬间,采用基于序贯演算的纯语法方法计算每个地点的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信