A Study of Pointer-Chasing Performance on Shared-Memory Processor-FPGA Systems

G. Weisz, Joseph Melber, Yu Wang, Kermin Fleming, E. Nurvitadhi, J. Hoe
{"title":"A Study of Pointer-Chasing Performance on Shared-Memory Processor-FPGA Systems","authors":"G. Weisz, Joseph Melber, Yu Wang, Kermin Fleming, E. Nurvitadhi, J. Hoe","doi":"10.1145/2847263.2847269","DOIUrl":null,"url":null,"abstract":"The advent of FPGA acceleration platforms with direct coherent access to processor memory creates an opportunity for accelerating applications with irregular parallelism governed by large in-memory pointer-based data structures. This paper uses the simple reference behavior of a linked-list traversal as a proxy to study the performance potentials of accelerating these applications on shared-memory processor-FPGA systems. The linked-list traversal is parameterized by node layout in memory, per-node data payload size, payload dependence, and traversal concurrency to capture the main performance effects of different pointer-based data structures and algorithms. The paper explores the trade-offs over a wide range of implementation options available on shared-memory processor-FPGA architectures, including using tightly-coupled processor assistance. We make observations of the key effects on currently available systems including the Xilinx Zynq, the Intel QuickAssist QPI FPGA Platform, and the Convey HC-2. The key results show: (1) the FPGA fabric is least efficient when traversing a single list with non-sequential node layout and a small payload size; (2) processor assistance can help alleviate this shortcoming; and (3) when appropriate, a fabric only approach that interleaves multiple linked list traversals is an effective way to maximize traversal performance.","PeriodicalId":438572,"journal":{"name":"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2847263.2847269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

The advent of FPGA acceleration platforms with direct coherent access to processor memory creates an opportunity for accelerating applications with irregular parallelism governed by large in-memory pointer-based data structures. This paper uses the simple reference behavior of a linked-list traversal as a proxy to study the performance potentials of accelerating these applications on shared-memory processor-FPGA systems. The linked-list traversal is parameterized by node layout in memory, per-node data payload size, payload dependence, and traversal concurrency to capture the main performance effects of different pointer-based data structures and algorithms. The paper explores the trade-offs over a wide range of implementation options available on shared-memory processor-FPGA architectures, including using tightly-coupled processor assistance. We make observations of the key effects on currently available systems including the Xilinx Zynq, the Intel QuickAssist QPI FPGA Platform, and the Convey HC-2. The key results show: (1) the FPGA fabric is least efficient when traversing a single list with non-sequential node layout and a small payload size; (2) processor assistance can help alleviate this shortcoming; and (3) when appropriate, a fabric only approach that interleaves multiple linked list traversals is an effective way to maximize traversal performance.
共享内存处理器- fpga系统指针跟踪性能研究
具有直接相干访问处理器内存的FPGA加速平台的出现,为加速由大型内存中基于指针的数据结构控制的不规则并行性的应用程序创造了机会。本文使用链表遍历的简单引用行为作为代理来研究在共享内存处理器- fpga系统上加速这些应用程序的性能潜力。链表遍历由内存中的节点布局、每个节点数据有效负载大小、有效负载依赖性和遍历并发性来参数化,以捕获不同的基于指针的数据结构和算法的主要性能影响。本文探讨了在共享内存处理器- fpga架构上广泛可用的实现选项的权衡,包括使用紧耦合处理器辅助。我们观察了当前可用系统的关键影响,包括Xilinx Zynq、Intel QuickAssist QPI FPGA平台和Convey HC-2。关键结果表明:(1)FPGA结构在遍历非顺序节点布局和小负载大小的单列表时效率最低;(2)处理器辅助可以帮助缓解这一缺点;(3)在适当的情况下,只使用结构的方法来交叉多个链表遍历是最大化遍历性能的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信