{"title":"Assessment of Different Turbulence Models on Simulations of Confined Jets in a Crossflow at Supercritical Pressure","authors":"S. Janani, Komal Gada, H. Rahai, F. Davoudzadeh","doi":"10.1115/IMECE2018-87894","DOIUrl":null,"url":null,"abstract":"Numerical investigations of using two different turbulence models of K-ε and K-ω on mixing characteristics of two confined jets in a crossflow at supercritical pressure have been performed. The confined jets were at 180 degrees from each other injecting into a round tube. The jet to crossflow mass flows ratio, r, was 2.96. Reynolds Averaged Navier Stokes (RANS) equations were solved using Siemens PLM CCM+ software. Results indicate higher mixing rate with K-ω turbulence model. Higher vorticity and lower turbulent kinetic energy are observed with k-ω turbulence model. Increased mixing indicate reduced velocity and pressure gradients and cooler fluid toward the tube wall.","PeriodicalId":229616,"journal":{"name":"Volume 7: Fluids Engineering","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical investigations of using two different turbulence models of K-ε and K-ω on mixing characteristics of two confined jets in a crossflow at supercritical pressure have been performed. The confined jets were at 180 degrees from each other injecting into a round tube. The jet to crossflow mass flows ratio, r, was 2.96. Reynolds Averaged Navier Stokes (RANS) equations were solved using Siemens PLM CCM+ software. Results indicate higher mixing rate with K-ω turbulence model. Higher vorticity and lower turbulent kinetic energy are observed with k-ω turbulence model. Increased mixing indicate reduced velocity and pressure gradients and cooler fluid toward the tube wall.