Sensor Fusion based 3D Target Visual Tracking for Autonomous Vehicles with IMM

Zhen Jia, Arjuna Balasuriya, S. Challa
{"title":"Sensor Fusion based 3D Target Visual Tracking for Autonomous Vehicles with IMM","authors":"Zhen Jia, Arjuna Balasuriya, S. Challa","doi":"10.1109/ROBOT.2005.1570379","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach for object identification and tracking for autonomous vehicle application. In this scheme, data from the vehicle’s onboard vision and motion sensors are fused to identify the target 3D dynamic features in the world coordinate. Here several simple and basic linear dynamic models are combined to make the approximation of the target’s unpredicted or complex motion properties. With these basic linear dynamic models a detailed description of the 3D target tracking system with the interacting multiple models (IMM) for Extended Kalman Filtering is presented. The target’s final state estimates are obtained as a weighted combination of the outputs from each different model. Performance of the proposed interacting multiple dynamic model tracking algorithm is demonstrated through experimental results.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"28 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper proposes an approach for object identification and tracking for autonomous vehicle application. In this scheme, data from the vehicle’s onboard vision and motion sensors are fused to identify the target 3D dynamic features in the world coordinate. Here several simple and basic linear dynamic models are combined to make the approximation of the target’s unpredicted or complex motion properties. With these basic linear dynamic models a detailed description of the 3D target tracking system with the interacting multiple models (IMM) for Extended Kalman Filtering is presented. The target’s final state estimates are obtained as a weighted combination of the outputs from each different model. Performance of the proposed interacting multiple dynamic model tracking algorithm is demonstrated through experimental results.
基于传感器融合的IMM自动驾驶汽车三维目标视觉跟踪
提出了一种用于自动驾驶汽车的目标识别与跟踪方法。该方案融合了车载视觉和运动传感器的数据,在世界坐标下识别目标的三维动态特征。本文将几种简单和基本的线性动力学模型结合起来,对目标的不可预测或复杂的运动特性进行逼近。利用这些基本的线性动力学模型,详细描述了扩展卡尔曼滤波的多模型相互作用的三维目标跟踪系统。目标的最终状态估计是作为每个不同模型输出的加权组合获得的。实验结果验证了所提出的多动态模型交互跟踪算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信