A neuromorphic categorization system with Online Sequential Extreme Learning

Ruoxi Ding, Bo Zhao, Shoushun Chen
{"title":"A neuromorphic categorization system with Online Sequential Extreme Learning","authors":"Ruoxi Ding, Bo Zhao, Shoushun Chen","doi":"10.1109/BioCAS.2014.6981780","DOIUrl":null,"url":null,"abstract":"This paper presents an event-driven categorization system which processes the address events from a Dynamic Vision Sensor. Using neuromorphic processing, cortex-like spike-based features are extracted by an event-driven MAX-like convolutional network. The extracted spike patterns are then classified by an Online Sequential Extreme Learning Machine with Auto Encoder. Using a Lookup Table, we achieve a virtually fully connected system by physically activating only a very small subset of the classification network. Experimental results show that the proposed system has a very fast training speed while still maintaining a competitive accuracy.","PeriodicalId":414575,"journal":{"name":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2014.6981780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an event-driven categorization system which processes the address events from a Dynamic Vision Sensor. Using neuromorphic processing, cortex-like spike-based features are extracted by an event-driven MAX-like convolutional network. The extracted spike patterns are then classified by an Online Sequential Extreme Learning Machine with Auto Encoder. Using a Lookup Table, we achieve a virtually fully connected system by physically activating only a very small subset of the classification network. Experimental results show that the proposed system has a very fast training speed while still maintaining a competitive accuracy.
基于在线顺序极限学习的神经形态分类系统
提出了一种事件驱动的分类系统,对动态视觉传感器的地址事件进行处理。使用神经形态处理,通过事件驱动的类max卷积网络提取类皮质的基于尖峰的特征。然后用带自动编码器的在线顺序极限学习机对提取的尖峰模式进行分类。使用查找表,我们通过物理激活分类网络的一个非常小的子集来实现一个几乎完全连接的系统。实验结果表明,该系统具有较快的训练速度,同时仍能保持较好的训练精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信