{"title":"A neuromorphic categorization system with Online Sequential Extreme Learning","authors":"Ruoxi Ding, Bo Zhao, Shoushun Chen","doi":"10.1109/BioCAS.2014.6981780","DOIUrl":null,"url":null,"abstract":"This paper presents an event-driven categorization system which processes the address events from a Dynamic Vision Sensor. Using neuromorphic processing, cortex-like spike-based features are extracted by an event-driven MAX-like convolutional network. The extracted spike patterns are then classified by an Online Sequential Extreme Learning Machine with Auto Encoder. Using a Lookup Table, we achieve a virtually fully connected system by physically activating only a very small subset of the classification network. Experimental results show that the proposed system has a very fast training speed while still maintaining a competitive accuracy.","PeriodicalId":414575,"journal":{"name":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2014.6981780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an event-driven categorization system which processes the address events from a Dynamic Vision Sensor. Using neuromorphic processing, cortex-like spike-based features are extracted by an event-driven MAX-like convolutional network. The extracted spike patterns are then classified by an Online Sequential Extreme Learning Machine with Auto Encoder. Using a Lookup Table, we achieve a virtually fully connected system by physically activating only a very small subset of the classification network. Experimental results show that the proposed system has a very fast training speed while still maintaining a competitive accuracy.