Contigious hyperquadrics of coequipped hyperbands sHm

Yu. I. Popov
{"title":"Contigious hyperquadrics of coequipped hyperbands sHm","authors":"Yu. I. Popov","doi":"10.5922/0321-4796-2019-50-14","DOIUrl":null,"url":null,"abstract":"We consider hyperquadrics that are internally connected to coequipped hyperbands in the projective space. Specifically, a hyperquadric Qn1 tangent to a hyperplane at the point is called a contiguous hyper quadric of a hyperband if it has a second-order contact with the base surface of the hyperband. In a the third order differential neighborhood of the forming element of the hyperband, two two-parameter bundles of fields of adjoining hyperquadrics are internally invariantly joined, their equations are given in a dot frame. The set of hyperquadrics such that the plane and the plane of Cartan are conjugate with respect to hyperquadric Qn1 is considered. The condition is shown under which the normal of the 2nd kind and the Cartan plane are conjugate with respect to the hyperquadric Qn1 . In addition, the following theorem is proved: normalization of a coequipped regular hyperband has a semi-internal equipment if and only if its normals of the first and second kind are polarly conjugate with respect to the hyperquadric.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2019-50-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider hyperquadrics that are internally connected to coequipped hyperbands in the projective space. Specifically, a hyperquadric Qn1 tangent to a hyperplane at the point is called a contiguous hyper quadric of a hyperband if it has a second-order contact with the base surface of the hyperband. In a the third order differential neighborhood of the forming element of the hyperband, two two-parameter bundles of fields of adjoining hyperquadrics are internally invariantly joined, their equations are given in a dot frame. The set of hyperquadrics such that the plane and the plane of Cartan are conjugate with respect to hyperquadric Qn1 is considered. The condition is shown under which the normal of the 2nd kind and the Cartan plane are conjugate with respect to the hyperquadric Qn1 . In addition, the following theorem is proved: normalization of a coequipped regular hyperband has a semi-internal equipment if and only if its normals of the first and second kind are polarly conjugate with respect to the hyperquadric.
共装备超带sHm的连续超二次曲面
我们考虑在射影空间中内部连接到共装备超带的超二次曲面。具体来说,在该点上与超平面相切的超二次曲面Qn * 1,如果它与超带的基面有二阶接触,则称为超带的连续超二次曲面。在超带形成元的三阶微分邻域中,相邻超二次曲面的两个双参数束域是内不变连接的,它们的方程用点坐标系给出。考虑了平面与Cartan平面相对于超二次曲面Qn * 1共轭的超二次曲面集。给出了第二类法线与Cartan平面相对于超二次曲面Qn + 1共轭的条件。此外,还证明了以下定理:当且仅当共装备正则超带的第一类法线和第二类法线相对于超二次曲面是极共轭的,其正则化具有半内装备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信