Acoustic emission signal classification using fuzzy c-means clustering

S. Omkar, S. Suresh, T. Raghavendra, V. Mani
{"title":"Acoustic emission signal classification using fuzzy c-means clustering","authors":"S. Omkar, S. Suresh, T. Raghavendra, V. Mani","doi":"10.1109/ICONIP.2002.1198989","DOIUrl":null,"url":null,"abstract":"Fuzzy c-means (FCM) clustering is used to classify the acoustic emission (AE) signal to different sources of signals. FCM has the ability to discover the cluster among the data, even when the boundaries between the subgroup are overlapping, FCM based technique has an advantage over conventional statistical technique like maximum likelihood estimate, nearest neighbor classifier etc, because they are distribution free (i.e.) no knowledge is required about the distribution of data. AE test is carried out using pulse, pencil and spark signal source on the surface of solid steel block. Four parameters-event duration (E/sub d/), peak amplitude (P/sub a/), rise time (R/sub t/) and ring down count (R/sub d/) are measured using AET 5000 system. These data are used to train and validate the FCM based classification.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Fuzzy c-means (FCM) clustering is used to classify the acoustic emission (AE) signal to different sources of signals. FCM has the ability to discover the cluster among the data, even when the boundaries between the subgroup are overlapping, FCM based technique has an advantage over conventional statistical technique like maximum likelihood estimate, nearest neighbor classifier etc, because they are distribution free (i.e.) no knowledge is required about the distribution of data. AE test is carried out using pulse, pencil and spark signal source on the surface of solid steel block. Four parameters-event duration (E/sub d/), peak amplitude (P/sub a/), rise time (R/sub t/) and ring down count (R/sub d/) are measured using AET 5000 system. These data are used to train and validate the FCM based classification.
基于模糊c均值聚类的声发射信号分类
采用模糊c均值(FCM)聚类方法对声发射信号进行分类。FCM有能力在数据中发现集群,即使当子组之间的边界重叠时,基于FCM的技术比传统的统计技术(如最大似然估计,最近邻分类器等)有优势,因为它们是无分布的(即)不需要关于数据分布的知识。采用脉冲、铅笔和火花信号源在实心钢块表面进行声发射试验。用AET 5000系统测量了事件持续时间(E/sub d/)、峰值幅度(P/sub a/)、上升时间(R/sub t/)和衰铃计数(R/sub d/)四个参数。这些数据用于训练和验证基于FCM的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信