Michael Günther, Paul Sikorski, M. Thiele, W. Lehner
{"title":"FacetE","authors":"Michael Günther, Paul Sikorski, M. Thiele, W. Lehner","doi":"10.1145/3395032.3395325","DOIUrl":null,"url":null,"abstract":"Today's natural language processing and information retrieval systems heavily depend on word embedding techniques to represent text values. However, given a specific task deciding for a word embedding dataset is not trivial. Current word embedding evaluation methods mostly provide only a one-dimensional quality measure, which does not express how knowledge from different domains is represented in the word embedding models. To overcome this limitation, we provide a new evaluation data set called FacetE derived from 125M Web tables, enabling domain-sensitive evaluation. We show that FacetE can effectively be used to evaluate word embedding models. The evaluation of common general-purpose word embedding models suggests that there is currently no best word embedding for every domain.","PeriodicalId":436501,"journal":{"name":"Proceedings of the Workshop on Testing Database Systems","volume":"284 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Testing Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3395032.3395325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Today's natural language processing and information retrieval systems heavily depend on word embedding techniques to represent text values. However, given a specific task deciding for a word embedding dataset is not trivial. Current word embedding evaluation methods mostly provide only a one-dimensional quality measure, which does not express how knowledge from different domains is represented in the word embedding models. To overcome this limitation, we provide a new evaluation data set called FacetE derived from 125M Web tables, enabling domain-sensitive evaluation. We show that FacetE can effectively be used to evaluate word embedding models. The evaluation of common general-purpose word embedding models suggests that there is currently no best word embedding for every domain.