An improved secondary ranking for many objective optimization problems

H. Singh, A. Isaacs, T. Ray, W. Smith
{"title":"An improved secondary ranking for many objective optimization problems","authors":"H. Singh, A. Isaacs, T. Ray, W. Smith","doi":"10.1145/1569901.1570190","DOIUrl":null,"url":null,"abstract":"Many objective optimization refers to optimization problems for which the number of objectives is significantly greater than conventionally studied 2 or 3. For such problems, large number of solutions become non-dominated, which reduces the convergence pressure of the Evolutionary Algorithms~(EAs) towards the Pareto Optimal Front. Recently, alternate secondary ranking schemes for have been suggested for NSGA-II in lieu of crowding distance to expedite its convergence for many objective problems. In this paper, we improvise upon an existing scheme~(epsilon dominance). The proposed approach is found to perform better than the other substitute distance assignment methods for the problems studied in this paper. A new diversity metric has also been proposed, which can be used in order to compare the performance of the various EAs.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many objective optimization refers to optimization problems for which the number of objectives is significantly greater than conventionally studied 2 or 3. For such problems, large number of solutions become non-dominated, which reduces the convergence pressure of the Evolutionary Algorithms~(EAs) towards the Pareto Optimal Front. Recently, alternate secondary ranking schemes for have been suggested for NSGA-II in lieu of crowding distance to expedite its convergence for many objective problems. In this paper, we improvise upon an existing scheme~(epsilon dominance). The proposed approach is found to perform better than the other substitute distance assignment methods for the problems studied in this paper. A new diversity metric has also been proposed, which can be used in order to compare the performance of the various EAs.
改进了许多目标优化问题的二级排序
许多目标优化是指目标数量明显大于传统研究的2或3的优化问题。对于这类问题,大量的解变得非支配,这降低了进化算法向Pareto最优前沿收敛的压力。近年来,为了加快NSGA-II在许多客观问题上的收敛速度,提出了替代拥挤距离的NSGA-II二级排序方案。在本文中,我们在一个已有的方案~(epsilon优势)上进行了即兴创作。对于本文研究的问题,所提出的方法比其他替代距离分配方法表现得更好。本文还提出了一种新的分集度量,可用于比较各种ea的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信