EDA and ML -- A Perfect Pair for Large-Scale Data Analysis

R. Hafen, T. Critchlow
{"title":"EDA and ML -- A Perfect Pair for Large-Scale Data Analysis","authors":"R. Hafen, T. Critchlow","doi":"10.1109/IPDPSW.2013.118","DOIUrl":null,"url":null,"abstract":"In this position paper, we discuss how Exploratory Data Analysis (EDA) and Machine Learning (ML) can work together in large-scale data analysis environments. In particular, we describe how applying EDA techniques and ML methods in a complementary fashion can be used to address some of the challenges faced when applying ML techniques to large, real world data sets, and discuss tools that help do the job. This iterative approach is demonstrated with a simple example of how extracting events from a historical sensor data set was enabled by iteratively identifying and filtering various types of erroneous data.","PeriodicalId":234552,"journal":{"name":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","volume":"356 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2013.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this position paper, we discuss how Exploratory Data Analysis (EDA) and Machine Learning (ML) can work together in large-scale data analysis environments. In particular, we describe how applying EDA techniques and ML methods in a complementary fashion can be used to address some of the challenges faced when applying ML techniques to large, real world data sets, and discuss tools that help do the job. This iterative approach is demonstrated with a simple example of how extracting events from a historical sensor data set was enabled by iteratively identifying and filtering various types of erroneous data.
EDA和ML——大规模数据分析的完美组合
在本文中,我们讨论了探索性数据分析(EDA)和机器学习(ML)如何在大规模数据分析环境中协同工作。特别是,我们描述了如何以互补的方式应用EDA技术和ML方法来解决将ML技术应用于大型真实世界数据集时面临的一些挑战,并讨论了有助于完成这项工作的工具。通过一个简单的示例演示了如何通过迭代地识别和过滤各种类型的错误数据来从历史传感器数据集中提取事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信