{"title":"Hard-Negatives or Non-Negatives? A Hard-Negative Selection Strategy for Cross-Modal Retrieval Using the Improved Marginal Ranking Loss","authors":"Damianos Galanopoulos, V. Mezaris","doi":"10.1109/ICCVW54120.2021.00261","DOIUrl":null,"url":null,"abstract":"Cross-modal learning has gained a lot of interest recently, and many applications of it, such as image-text retrieval, cross-modal video search, or video captioning have been proposed. In this work, we deal with the cross-modal video retrieval problem. The state-of-the-art approaches are based on deep network architectures, and rely on mining hard-negative samples during training to optimize the selection of the network’s parameters. Starting from a state-of-the-art cross-modal architecture that uses the improved marginal ranking loss function, we propose a simple strategy for hard-negative mining to identify which training samples are hard-negatives and which, although presently treated as hard-negatives, are likely not negative samples at all and shouldn’t be treated as such. Additionally, to take full advantage of network models trained using different de-sign choices for hard-negative mining, we examine model combination strategies, and we design a hybrid one effectively combining large numbers of trained models.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Cross-modal learning has gained a lot of interest recently, and many applications of it, such as image-text retrieval, cross-modal video search, or video captioning have been proposed. In this work, we deal with the cross-modal video retrieval problem. The state-of-the-art approaches are based on deep network architectures, and rely on mining hard-negative samples during training to optimize the selection of the network’s parameters. Starting from a state-of-the-art cross-modal architecture that uses the improved marginal ranking loss function, we propose a simple strategy for hard-negative mining to identify which training samples are hard-negatives and which, although presently treated as hard-negatives, are likely not negative samples at all and shouldn’t be treated as such. Additionally, to take full advantage of network models trained using different de-sign choices for hard-negative mining, we examine model combination strategies, and we design a hybrid one effectively combining large numbers of trained models.