An Enhanced SCMA Detector Enabled by Deep Neural Network

Chao Lu, Wei Xu, Hong Shen, Hua Zhang, X. You
{"title":"An Enhanced SCMA Detector Enabled by Deep Neural Network","authors":"Chao Lu, Wei Xu, Hong Shen, Hua Zhang, X. You","doi":"10.1109/ICCChina.2018.8641219","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a learning approach for sparse code multiple access (SCMA) signal detection by using a deep neural network via unfolding the procedure of message passing algorithm (MPA). The MPA can be converted to a sparsely connected neural network if we treat the weights as the parameters of a neural network. The neural network can be trained off-line and then deployed for online detection. By further refining the network weights corresponding to the edges of a factor graph, the proposed method achieves a better performance. Moreover, the deep neural network based detection is a computationally efficient since highly paralleled computations in the network are enabled in emerging Artificial Intelligence (AI) chips.","PeriodicalId":170216,"journal":{"name":"2018 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChina.2018.8641219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper, we propose a learning approach for sparse code multiple access (SCMA) signal detection by using a deep neural network via unfolding the procedure of message passing algorithm (MPA). The MPA can be converted to a sparsely connected neural network if we treat the weights as the parameters of a neural network. The neural network can be trained off-line and then deployed for online detection. By further refining the network weights corresponding to the edges of a factor graph, the proposed method achieves a better performance. Moreover, the deep neural network based detection is a computationally efficient since highly paralleled computations in the network are enabled in emerging Artificial Intelligence (AI) chips.
基于深度神经网络的增强型SCMA检测器
本文提出了一种基于深度神经网络的稀疏码多址(SCMA)信号检测学习方法。如果将权重作为神经网络的参数,则可以将MPA转换为稀疏连接的神经网络。神经网络可以离线训练,然后用于在线检测。通过进一步细化因子图边对应的网络权值,该方法获得了更好的性能。此外,基于深度神经网络的检测具有计算效率,因为网络中的高度并行计算已在新兴的人工智能(AI)芯片中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信