Determination of local transient stability control based on neural networks

Yutian Liu, Peng Zhang, Tao Gao, D. Xia
{"title":"Determination of local transient stability control based on neural networks","authors":"Yutian Liu, Peng Zhang, Tao Gao, D. Xia","doi":"10.1109/EMPD.1998.702584","DOIUrl":null,"url":null,"abstract":"In order to apply neural networks to practical power systems, two feature reduction methods are presented in this paper. One introduces the generator coherent clustering and electrical distance to reduce the number of features, and the other adopts a linear neural network to perform feature extraction and trains it together with all the sub-neural networks. Simulation results of the Northwest power system in China indicate the feasibility of local transient stability control decisions in large-scale power systems based on neural networks.","PeriodicalId":434526,"journal":{"name":"Proceedings of EMPD '98. 1998 International Conference on Energy Management and Power Delivery (Cat. No.98EX137)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of EMPD '98. 1998 International Conference on Energy Management and Power Delivery (Cat. No.98EX137)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMPD.1998.702584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to apply neural networks to practical power systems, two feature reduction methods are presented in this paper. One introduces the generator coherent clustering and electrical distance to reduce the number of features, and the other adopts a linear neural network to perform feature extraction and trains it together with all the sub-neural networks. Simulation results of the Northwest power system in China indicate the feasibility of local transient stability control decisions in large-scale power systems based on neural networks.
基于神经网络的局部暂态稳定控制的确定
为了将神经网络应用于实际电力系统,本文提出了两种特征约简方法。一种是引入发电机相干聚类和电距离来减少特征数量,另一种是采用线性神经网络进行特征提取,并与所有子神经网络一起进行训练。中国西北电力系统的仿真结果表明,基于神经网络的大规模电力系统局部暂态稳定控制决策是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信