A pareto-based genetic algorithm for optimized assignment of VM requests on a cloud brokering environment

Y. Kessaci, N. Melab, E. Talbi
{"title":"A pareto-based genetic algorithm for optimized assignment of VM requests on a cloud brokering environment","authors":"Y. Kessaci, N. Melab, E. Talbi","doi":"10.1109/CEC.2013.6557869","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with cloud brokering for the assignment optimization of VM requests in three-tier cloud infrastructures. We investigate the Pareto-based meta-heuristic approach to take into account multiple client and broker-centric optimization criteria. We propose a new multi-objective Genetic Algorithm (MOGA-CB ) that can be integrated in a cloud broker. Two objectives are considered in the optimization process: minimizing both the response time and the cost of the selected VM instances to satisfy the clients and to maximize the profit of the broker. The approach has been experimented using realistic data of different types of Amazon EC2 instances and their pricing history. The reported results show that MOGA-CB provides efficiently effective Pareto sets of solutions.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

In this paper, we deal with cloud brokering for the assignment optimization of VM requests in three-tier cloud infrastructures. We investigate the Pareto-based meta-heuristic approach to take into account multiple client and broker-centric optimization criteria. We propose a new multi-objective Genetic Algorithm (MOGA-CB ) that can be integrated in a cloud broker. Two objectives are considered in the optimization process: minimizing both the response time and the cost of the selected VM instances to satisfy the clients and to maximize the profit of the broker. The approach has been experimented using realistic data of different types of Amazon EC2 instances and their pricing history. The reported results show that MOGA-CB provides efficiently effective Pareto sets of solutions.
基于pareto的遗传算法在云代理环境下优化VM请求分配
在本文中,我们讨论了云代理在三层云基础架构中的VM请求分配优化问题。我们研究了基于pareto的元启发式方法,以考虑多个以客户端和代理为中心的优化标准。提出了一种可以集成到云代理中的多目标遗传算法(MOGA-CB)。在优化过程中要考虑两个目标:最小化所选VM实例的响应时间和成本,以满足客户,并最大化代理的利润。该方法已经使用不同类型的Amazon EC2实例及其定价历史的实际数据进行了实验。已报道的结果表明,MOGA-CB提供了有效的Pareto解集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信