{"title":"Differential Scoring for Systolic Sequence Alignment","authors":"A. E. D. L. Serna","doi":"10.1109/BIBE.2007.4375716","DOIUrl":null,"url":null,"abstract":"Systolic implementations of dynamic programming solutions that utilize a similarity matrix can achieve appreciable performance with both course-and fine-grain parallelization. A limitation of systolic array design is that score routing between array elements, array I/O bandwidth, and score memory capacity are dependent upon the length of the sequence that can be processed. A novel approach of differential scoring is presented that exploits adjacency and decouples the complexity of score routing and systolic array bandwidth to sequence length. Instead, these design parameters become a function of algorithm sensitivity. As a consequence, the Simile implementation of differential scoring for sequence alignment has reduced score routing, I/O bandwidth, and score storage by 82% for sequences of length 10 and has significantly improved gate count, clock rate, and power utilization per systolic processing element.","PeriodicalId":147263,"journal":{"name":"International Conferences on Biological Information and Biomedical Engineering","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conferences on Biological Information and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2007.4375716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Systolic implementations of dynamic programming solutions that utilize a similarity matrix can achieve appreciable performance with both course-and fine-grain parallelization. A limitation of systolic array design is that score routing between array elements, array I/O bandwidth, and score memory capacity are dependent upon the length of the sequence that can be processed. A novel approach of differential scoring is presented that exploits adjacency and decouples the complexity of score routing and systolic array bandwidth to sequence length. Instead, these design parameters become a function of algorithm sensitivity. As a consequence, the Simile implementation of differential scoring for sequence alignment has reduced score routing, I/O bandwidth, and score storage by 82% for sequences of length 10 and has significantly improved gate count, clock rate, and power utilization per systolic processing element.