Adaptation of RF and CNN on Spark

Y. Kou, Zhi Hong, Yun Tian, S. Wang
{"title":"Adaptation of RF and CNN on Spark","authors":"Y. Kou, Zhi Hong, Yun Tian, S. Wang","doi":"10.1145/3388142.3388157","DOIUrl":null,"url":null,"abstract":"Biological images are used in many applications, most of which are important in medical field. For example, MRI scans and CT scans result in high resolution images that are critical for diagnosis of cancers and other malfunction of organs. Nowadays, high resolution ultrasound images can provide details to examine blood vessel blockage. Another type of biological images are those of mixed patterns of proteins in microscope human protein atlas images.Due to the enormous amount of image data available even in a single medical organization, Machine Learning and Deep Learning technology have been used to assist in the image data analysis.Spark is a computing framework that has been proved to speed up data analysis dramatically. However, Spark Scala doesn't fully support Deep learning algorithms. In this paper, we present a case study of adapting the Random Forest (RF) and Convolutional Neural Network (CNN) to the Spark Scala framework. These algorithms were applied to multi-classes multilabel classification on a biological dataset from Kagglers. The experimental results show that both RF and CNN can be implemented with Spark Scala and achieve extremely high throughput performance.","PeriodicalId":409298,"journal":{"name":"Proceedings of the 2020 the 4th International Conference on Compute and Data Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 the 4th International Conference on Compute and Data Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388142.3388157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biological images are used in many applications, most of which are important in medical field. For example, MRI scans and CT scans result in high resolution images that are critical for diagnosis of cancers and other malfunction of organs. Nowadays, high resolution ultrasound images can provide details to examine blood vessel blockage. Another type of biological images are those of mixed patterns of proteins in microscope human protein atlas images.Due to the enormous amount of image data available even in a single medical organization, Machine Learning and Deep Learning technology have been used to assist in the image data analysis.Spark is a computing framework that has been proved to speed up data analysis dramatically. However, Spark Scala doesn't fully support Deep learning algorithms. In this paper, we present a case study of adapting the Random Forest (RF) and Convolutional Neural Network (CNN) to the Spark Scala framework. These algorithms were applied to multi-classes multilabel classification on a biological dataset from Kagglers. The experimental results show that both RF and CNN can be implemented with Spark Scala and achieve extremely high throughput performance.
在Spark上改编RF和CNN
生物图像的应用非常广泛,其中在医学领域占有重要地位。例如,核磁共振扫描和CT扫描产生的高分辨率图像对癌症和其他器官功能障碍的诊断至关重要。如今,高分辨率的超声图像可以提供血管阻塞检查的细节。另一种类型的生物图像是显微镜下人类蛋白质图谱图像中蛋白质的混合模式。由于即使在单个医疗机构中也有大量可用的图像数据,因此机器学习和深度学习技术已被用于辅助图像数据分析。Spark是一个计算框架,已被证明可以显著加快数据分析速度。然而,Spark Scala并不完全支持深度学习算法。在本文中,我们提出了一个将随机森林(RF)和卷积神经网络(CNN)应用于Spark Scala框架的案例研究。将这些算法应用于Kagglers生物数据集的多类多标签分类。实验结果表明,RF和CNN都可以用Spark Scala实现,并获得极高的吞吐量性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信