{"title":"Network Filtering of Spatial-temporal GNN for Multivariate Time-series Prediction","authors":"Yuanrong Wang, T. Aste","doi":"10.1145/3533271.3561678","DOIUrl":null,"url":null,"abstract":"We propose an architecture for multivariate time-series prediction that integrates a spatial-temporal graph neural network with a filtering module which filters the inverse correlation matrix into a sparse network structure. In contrast with existing sparsification methods adopted in graph neural networks, our model explicitly leverages time-series filtering to overcome the low signal-to-noise ratio typical of complex systems data. We present a set of experiments, where we predict future sales volume from a synthetic time-series sales volume dataset. The proposed spatial-temporal graph neural network displays superior performances to baseline approaches with no graphical information, fully connected, disconnected graphs, and unfiltered graphs, as well as the state-of-the-art spatial-temporal GNN. Comparison of the results with Diffusion Convolutional Recurrent Neural Network (DCRNN) suggests that, by combining a (inferior) GNN with graph sparsification and filtering, one can achieve comparable or better efficacy than the state-of-the-art in multivariate time-series regression.","PeriodicalId":134888,"journal":{"name":"Proceedings of the Third ACM International Conference on AI in Finance","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533271.3561678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We propose an architecture for multivariate time-series prediction that integrates a spatial-temporal graph neural network with a filtering module which filters the inverse correlation matrix into a sparse network structure. In contrast with existing sparsification methods adopted in graph neural networks, our model explicitly leverages time-series filtering to overcome the low signal-to-noise ratio typical of complex systems data. We present a set of experiments, where we predict future sales volume from a synthetic time-series sales volume dataset. The proposed spatial-temporal graph neural network displays superior performances to baseline approaches with no graphical information, fully connected, disconnected graphs, and unfiltered graphs, as well as the state-of-the-art spatial-temporal GNN. Comparison of the results with Diffusion Convolutional Recurrent Neural Network (DCRNN) suggests that, by combining a (inferior) GNN with graph sparsification and filtering, one can achieve comparable or better efficacy than the state-of-the-art in multivariate time-series regression.