Bayesian Image Reconstruction in X-ray Fiber Diffraction

S. Baskaran, R. Millane
{"title":"Bayesian Image Reconstruction in X-ray Fiber Diffraction","authors":"S. Baskaran, R. Millane","doi":"10.1364/srs.1998.swa.3","DOIUrl":null,"url":null,"abstract":"The structure completion problem in x-ray fiber diffraction analysis, a crystallographic method for studying polymer structures, involves reconstructing an incomplete image from a known part and experimental data in the form of the squared amplitudes of the Fourier coefficients. Formulating this as a Bayesian estimation problem allows explicit expressions for MMSE and MAP estimates to be obtained. Calculations using simulated fiber diffraction data show that the MMSE estimate out- performs current methods that correspond to certain MAP estimates.","PeriodicalId":184407,"journal":{"name":"Signal Recovery and Synthesis","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1998.swa.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The structure completion problem in x-ray fiber diffraction analysis, a crystallographic method for studying polymer structures, involves reconstructing an incomplete image from a known part and experimental data in the form of the squared amplitudes of the Fourier coefficients. Formulating this as a Bayesian estimation problem allows explicit expressions for MMSE and MAP estimates to be obtained. Calculations using simulated fiber diffraction data show that the MMSE estimate out- performs current methods that correspond to certain MAP estimates.
x射线光纤衍射中的贝叶斯图像重建
x射线纤维衍射分析是一种研究聚合物结构的晶体学方法,其结构补全问题涉及到从已知部分和实验数据中以傅里叶系数振幅的平方形式重建不完整的图像。将其表述为贝叶斯估计问题,可以获得MMSE和MAP估计的显式表达式。利用模拟光纤衍射数据进行的计算表明,MMSE估计优于当前与某些MAP估计相对应的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信