Introduction to Neutrosophic Bayes Estimation Theory

Nizar Altounji, M. B. Zeina, Moustafa Mazhar Ranneh
{"title":"Introduction to Neutrosophic Bayes Estimation Theory","authors":"Nizar Altounji, M. B. Zeina, Moustafa Mazhar Ranneh","doi":"10.54216/gjmsa.070105","DOIUrl":null,"url":null,"abstract":"This research presents the concept of neutrosophic Bayesian estimation defining the neutrosophic loss function, neutrosophic risk function, neutrosophic posterior risk function and neutrosophic maximum a posteriori estimator. Minimization of the neutrosophic posterior risk of the estimator is also discussed. An algebraic isomorphism is used to simplify equations solving. As an application of the presented theorems, a sample drawn from a neutrosophic gamma distribution with a conjugate prior is discussed and studied and the parameter of the formulated distribution is successfully estimated using neutrosophic quadratic loss function which results an estimator that equals the posterior mean.","PeriodicalId":299243,"journal":{"name":"Galoitica: Journal of Mathematical Structures and Applications","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galoitica: Journal of Mathematical Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/gjmsa.070105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents the concept of neutrosophic Bayesian estimation defining the neutrosophic loss function, neutrosophic risk function, neutrosophic posterior risk function and neutrosophic maximum a posteriori estimator. Minimization of the neutrosophic posterior risk of the estimator is also discussed. An algebraic isomorphism is used to simplify equations solving. As an application of the presented theorems, a sample drawn from a neutrosophic gamma distribution with a conjugate prior is discussed and studied and the parameter of the formulated distribution is successfully estimated using neutrosophic quadratic loss function which results an estimator that equals the posterior mean.
中性贝叶斯估计理论简介
本研究提出中性粒细胞贝叶斯估计的概念,定义了中性粒细胞损失函数、中性粒细胞风险函数、中性粒细胞后验风险函数和中性粒细胞最大后验估计。对估计器的嗜中性后验风险的最小化也进行了讨论。利用代数同构简化方程求解。作为所提定理的应用,我们讨论和研究了从具有共轭先验的中性粒细胞γ分布中抽取的样本,并利用中性粒细胞二次损失函数成功地估计了该分布的参数,得到了一个等于后验均值的估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信