System Identification and Nonlinear Factor Analysis for Discovery and Visualization of Dynamic Gene Regulatory Pathways

A. Darvish, K. Najarian, D. Jeong, W. Ribarsky
{"title":"System Identification and Nonlinear Factor Analysis for Discovery and Visualization of Dynamic Gene Regulatory Pathways","authors":"A. Darvish, K. Najarian, D. Jeong, W. Ribarsky","doi":"10.1109/CIBCB.2005.1594901","DOIUrl":null,"url":null,"abstract":"DNA microarray time-series provide the information vital to estimate the dynamic regulatory pathways and therefore predict the dynamic interaction among genes in time. While dynamic system identification theory has been applied to many fields of study, due to some practical limitations, this theory has been widely used to analyze DNA microarray time series. In this paper, we describe some of these limitations and propose a hierarchical model utilizing nonlinear factor analysis methods to analyze time-series DNA microarray data and identify the dynamic regulatory pathways. The proposed model is applied to model the eukaryotic cell cycle process using a popular dataset of cell cycle time-series. The results indicate that the proposed method can successfully predict the dynamic pathway involved in the process.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

DNA microarray time-series provide the information vital to estimate the dynamic regulatory pathways and therefore predict the dynamic interaction among genes in time. While dynamic system identification theory has been applied to many fields of study, due to some practical limitations, this theory has been widely used to analyze DNA microarray time series. In this paper, we describe some of these limitations and propose a hierarchical model utilizing nonlinear factor analysis methods to analyze time-series DNA microarray data and identify the dynamic regulatory pathways. The proposed model is applied to model the eukaryotic cell cycle process using a popular dataset of cell cycle time-series. The results indicate that the proposed method can successfully predict the dynamic pathway involved in the process.
动态基因调控通路发现与可视化的系统辨识与非线性因子分析
DNA微阵列时间序列为估计动态调控途径提供了重要信息,从而及时预测基因间的动态相互作用。虽然动态系统识别理论已经应用于许多研究领域,但由于一些实际的限制,该理论已被广泛用于分析DNA微阵列时间序列。在本文中,我们描述了其中的一些局限性,并提出了一个利用非线性因子分析方法分析时间序列DNA微阵列数据和识别动态调控途径的层次模型。所提出的模型是应用于模拟真核细胞周期过程使用一个流行的数据集的细胞周期时间序列。结果表明,所提出的方法能够成功地预测该过程所涉及的动态路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信