A fuzzy cerebellar model articulation controller

C. Jou
{"title":"A fuzzy cerebellar model articulation controller","authors":"C. Jou","doi":"10.1109/FUZZY.1992.258722","DOIUrl":null,"url":null,"abstract":"An adaptive fuzzy controller based on the cerebellar model articulation controller is presented. The controller is basically a table lookup module in which fuzzy sets are stored and manipulated by using fuzzy set theory. Analogous to neural networks, this controller adaptively estimates continuous functions from sampled data without specifying mathematically how outputs depend on inputs. As a result, it is easy to modify in order to accommodate changes in the system. Learning is based on observations of the input-output relationship of the system, and there is no need to identify fuzzy logical rules from the human operator. The goal is to demonstrate the use of a neural-network scheme as applied to building the adaptive fuzzy system.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"437 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

An adaptive fuzzy controller based on the cerebellar model articulation controller is presented. The controller is basically a table lookup module in which fuzzy sets are stored and manipulated by using fuzzy set theory. Analogous to neural networks, this controller adaptively estimates continuous functions from sampled data without specifying mathematically how outputs depend on inputs. As a result, it is easy to modify in order to accommodate changes in the system. Learning is based on observations of the input-output relationship of the system, and there is no need to identify fuzzy logical rules from the human operator. The goal is to demonstrate the use of a neural-network scheme as applied to building the adaptive fuzzy system.<>
一种模糊小脑模型关节控制器
提出了一种基于小脑模型关节控制器的自适应模糊控制器。控制器基本上是一个表查找模块,其中使用模糊集理论存储和操作模糊集。与神经网络类似,该控制器自适应地从采样数据中估计连续函数,而无需在数学上指定输出如何依赖于输入。因此,它很容易修改,以适应系统中的变化。学习是基于对系统输入输出关系的观察,不需要从人类操作员那里识别模糊逻辑规则。目的是演示如何使用神经网络方案来构建自适应模糊系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信