Jingwen Zhu, O. Omomukuyo, R. Venkatesan, Cheng Li, O. Dobre
{"title":"Rf-pilot phase noise compensation for long-haul coherent optical OFDM systems","authors":"Jingwen Zhu, O. Omomukuyo, R. Venkatesan, Cheng Li, O. Dobre","doi":"10.1109/CWIT.2015.7255168","DOIUrl":null,"url":null,"abstract":"Long-haul optical transmission systems employing coherent optical orthogonal frequency division multiplexing (CO-OFDM) are sensitive to laser phase noise. This causes a common phase rotation and inter-carrier interference. An effective method to compensate for the phase noise is to insert an RF-pilot tone in the middle of the OFDM signal. This RF-pilot is used to reverse the phase distortion at the receiver. This paper presents a performance analysis of the RF-pilot phase noise compensation scheme in a simulated 64 Gb/s CO-OFDM system. The effects of various parameters including laser linewidth, Mach-Zehnder modulator drive power, pilot-to-signal ratio, and fiber launch power are investigated. A comparison with the pilot-aided common phase error compensation method is provided to show the differences in the BER performance with respect to the required overhead.","PeriodicalId":426245,"journal":{"name":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2015.7255168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Long-haul optical transmission systems employing coherent optical orthogonal frequency division multiplexing (CO-OFDM) are sensitive to laser phase noise. This causes a common phase rotation and inter-carrier interference. An effective method to compensate for the phase noise is to insert an RF-pilot tone in the middle of the OFDM signal. This RF-pilot is used to reverse the phase distortion at the receiver. This paper presents a performance analysis of the RF-pilot phase noise compensation scheme in a simulated 64 Gb/s CO-OFDM system. The effects of various parameters including laser linewidth, Mach-Zehnder modulator drive power, pilot-to-signal ratio, and fiber launch power are investigated. A comparison with the pilot-aided common phase error compensation method is provided to show the differences in the BER performance with respect to the required overhead.