Knowledge extraction from trained neural networks: a position paper

A.S. d'Avila Garcez, K. Broda, D. Gabbay, Alberto F. de Souza
{"title":"Knowledge extraction from trained neural networks: a position paper","authors":"A.S. d'Avila Garcez, K. Broda, D. Gabbay, Alberto F. de Souza","doi":"10.1109/ICONIP.1999.845678","DOIUrl":null,"url":null,"abstract":"It is commonly accepted that one of the main drawbacks of neural networks, the lack of explanation, may be ameliorated by the so called rule extraction methods. We argue that neural networks encode nonmonotonicity, i.e., they jump to conclusions that might be withdrawn when new information is available. The authors present an extraction method that complies with the above perspective. We define a partial ordering on the network's input vector set, and use it to confine the search space for the extraction of rules by querying the network. We then define a number of simplification metarules, show that the extraction is sound and present the results of applying the extraction algorithm to the Monks' Problems (S.B. Thrun et al., 1991).","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.845678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is commonly accepted that one of the main drawbacks of neural networks, the lack of explanation, may be ameliorated by the so called rule extraction methods. We argue that neural networks encode nonmonotonicity, i.e., they jump to conclusions that might be withdrawn when new information is available. The authors present an extraction method that complies with the above perspective. We define a partial ordering on the network's input vector set, and use it to confine the search space for the extraction of rules by querying the network. We then define a number of simplification metarules, show that the extraction is sound and present the results of applying the extraction algorithm to the Monks' Problems (S.B. Thrun et al., 1991).
从训练神经网络中提取知识:立场文件
人们普遍认为,神经网络的主要缺点之一,即缺乏解释,可以通过所谓的规则提取方法来改善。我们认为,神经网络编码非单调性,也就是说,当有新信息可用时,它们可能会得出可能被撤回的结论。作者提出了一种符合上述观点的提取方法。我们在网络的输入向量集上定义了一个偏序,并利用它来限制查询网络提取规则的搜索空间。然后,我们定义了一些简化元规则,表明提取是合理的,并展示了将提取算法应用于Monks问题的结果(S.B. Thrun等人,1991)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信