FNOCEE: A framework for NoC evaluation by FPGA-based emulation

D. Pfefferkorn, Achim Schmider, G. P. Vayá, M. Neuenhahn, H. Blume
{"title":"FNOCEE: A framework for NoC evaluation by FPGA-based emulation","authors":"D. Pfefferkorn, Achim Schmider, G. P. Vayá, M. Neuenhahn, H. Blume","doi":"10.1109/SAMOS.2015.7363663","DOIUrl":null,"url":null,"abstract":"This paper introduces FNOCEE, a framework for the evaluation of NoC-based many-cores systems by FPGA-based emulation. It uses a task graph-oriented approach to model applications, while a hardware-accelerated genetic algorithm is employed to find close-to-optimal solutions to the task mapping problem. The proposed genetic algorithm is analyzed in detail, e.g., in terms of mutation rate and number of elite individuals. In order to illustrate the framework's capabilities, several case studies have been performed, wherein scalability of relevant parallel applications is investigated with regard to the number and type of available processing cores and the generated traffic load as a result of inter-task communication.","PeriodicalId":346802,"journal":{"name":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2015.7363663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper introduces FNOCEE, a framework for the evaluation of NoC-based many-cores systems by FPGA-based emulation. It uses a task graph-oriented approach to model applications, while a hardware-accelerated genetic algorithm is employed to find close-to-optimal solutions to the task mapping problem. The proposed genetic algorithm is analyzed in detail, e.g., in terms of mutation rate and number of elite individuals. In order to illustrate the framework's capabilities, several case studies have been performed, wherein scalability of relevant parallel applications is investigated with regard to the number and type of available processing cores and the generated traffic load as a result of inter-task communication.
FNOCEE:基于fpga仿真的NoC评估框架
本文介绍了一种基于fpga的多核系统仿真评估框架FNOCEE。它使用面向任务图的方法对应用程序建模,同时使用硬件加速的遗传算法来找到任务映射问题的接近最优解。对所提出的遗传算法进行了详细的分析,例如,从突变率和精英个体数量方面进行了分析。为了说明框架的功能,执行了几个案例研究,其中根据可用处理核心的数量和类型以及由于任务间通信而产生的流量负载,研究了相关并行应用程序的可伸缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信