TransPCC: Towards Deep Point Cloud Compression via Transformers

Zujie Liang, Fan Liang
{"title":"TransPCC: Towards Deep Point Cloud Compression via Transformers","authors":"Zujie Liang, Fan Liang","doi":"10.1145/3512527.3531423","DOIUrl":null,"url":null,"abstract":"High-efficient point cloud compression (PCC) techniques are necessary for various 3D practical applications, such as autonomous driving, holographic transmission, virtual reality, etc. The sparsity and disorder nature make it challenging to design frameworks for point cloud compression. In this paper, we present a new model, called TransPCC that adopts a fully Transformer auto-encoder architecture for deep Point Cloud Compression. By taking the input point cloud as a set in continuous space with learnable position embeddings, we employ the self-attention layers and necessary point-wise operations for point cloud compression. The self-attention based architecture enables our model to better learn point-wise dependency information for point cloud compression. Experimental results show that our method outperforms state-of-the-art methods on large-scale point cloud dataset.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

High-efficient point cloud compression (PCC) techniques are necessary for various 3D practical applications, such as autonomous driving, holographic transmission, virtual reality, etc. The sparsity and disorder nature make it challenging to design frameworks for point cloud compression. In this paper, we present a new model, called TransPCC that adopts a fully Transformer auto-encoder architecture for deep Point Cloud Compression. By taking the input point cloud as a set in continuous space with learnable position embeddings, we employ the self-attention layers and necessary point-wise operations for point cloud compression. The self-attention based architecture enables our model to better learn point-wise dependency information for point cloud compression. Experimental results show that our method outperforms state-of-the-art methods on large-scale point cloud dataset.
TransPCC:通过变压器实现深度点云压缩
高效的点云压缩(PCC)技术是自动驾驶、全息传输、虚拟现实等各种三维实际应用所必需的。点云的稀疏性和无序性给点云压缩框架的设计带来了挑战。在本文中,我们提出了一个新的模型,称为TransPCC,它采用了一个完全Transformer的自编码器架构来进行深度点云压缩。通过将输入点云作为具有可学习位置嵌入的连续空间中的集合,我们使用自关注层和必要的逐点操作来进行点云压缩。基于自关注的体系结构使我们的模型能够更好地学习点云压缩的逐点依赖信息。实验结果表明,该方法在大规模点云数据集上优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信