Random-Sampling Multipath Hypothesis Propagation for Cost Approximation in Long-Horizon Optimal Control

Shankarachary Ragi, H. Mittelmann
{"title":"Random-Sampling Multipath Hypothesis Propagation for Cost Approximation in Long-Horizon Optimal Control","authors":"Shankarachary Ragi, H. Mittelmann","doi":"10.1109/CCTA41146.2020.9206334","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a Monte-Carlo based heuristic approach to approximate the objective function in long horizon optimal control problems. In this approach, we evolve the system state over multiple trajectories into the future while sampling the noise disturbances at each time-step, and find the weighted average of the costs along all the trajectories. We call these methods random sampling - multipath hypothesis propagation or RS-MHP. These methods (or variants) exist in the literature; however, the literature lacks convergence results for a generic class of nonlinear systems. This paper fills this knowledge gap to a certain extent. We derive convergence results for the cost approximation error from the MHP methods and discuss their convergence (in probability) as the sample size increases. As a case study, we apply RS-MHP to approximate the cost function in a linear quadratic control problem and demonstrate the benefits of our approach against an existing and closely related approximation approach called nominal belief-state optimization.","PeriodicalId":241335,"journal":{"name":"2020 IEEE Conference on Control Technology and Applications (CCTA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA41146.2020.9206334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we develop a Monte-Carlo based heuristic approach to approximate the objective function in long horizon optimal control problems. In this approach, we evolve the system state over multiple trajectories into the future while sampling the noise disturbances at each time-step, and find the weighted average of the costs along all the trajectories. We call these methods random sampling - multipath hypothesis propagation or RS-MHP. These methods (or variants) exist in the literature; however, the literature lacks convergence results for a generic class of nonlinear systems. This paper fills this knowledge gap to a certain extent. We derive convergence results for the cost approximation error from the MHP methods and discuss their convergence (in probability) as the sample size increases. As a case study, we apply RS-MHP to approximate the cost function in a linear quadratic control problem and demonstrate the benefits of our approach against an existing and closely related approximation approach called nominal belief-state optimization.
长视界最优控制中成本逼近的随机抽样多路径假设传播
本文提出了一种基于蒙特卡罗的启发式方法来逼近长视界最优控制问题中的目标函数。在这种方法中,我们通过多个轨迹将系统状态演化到未来,同时在每个时间步长对噪声干扰进行采样,并找到沿所有轨迹的代价的加权平均值。我们称这些方法为随机抽样-多路径假设传播或RS-MHP。这些方法(或变体)存在于文献中;然而,文献缺乏一般非线性系统的收敛结果。本文在一定程度上填补了这一知识空白。我们从MHP方法中得到了代价近似误差的收敛结果,并讨论了它们随样本量增加的收敛性(在概率上)。作为一个案例研究,我们应用RS-MHP来近似线性二次控制问题中的成本函数,并展示了我们的方法相对于现有的密切相关的近似方法(称为名义信念状态优化)的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信