{"title":"Influence of Different Heat Input on Submerged Arc Welded Joints of High Strength Low Alloy Steel SX780CF","authors":"H. Li, Xian-long Hu, Zhixian Peng, Youlong Zhou","doi":"10.11648/J.IJMEA.20190704.12","DOIUrl":null,"url":null,"abstract":"SX780CF is a new type domestic high strength low alloy (HSLA) steel with tensile strength of 800 MPa, which was used firstly for pressure pipes in the hydropower unit. In order to improve the efficiency, SX780CF is generally welded by submerged arc welding (SAW), and a kind of special intelligent welding machine for large-scale pressure steel pipe was adopted, which can realize intelligent mechanized grouping and automatic welding in tunnel. In this paper, two different levels of heat input were used to weld SX780CF. The weldability of two joints was analyzed, the mechanical properties of the joints were measured, and the hardness distribution of the joints was tested. Meanwhile, the microstructure was observed. The results show that the properties of these joints welded by two different levels of heat input could satisfy the demand of the GB 50766 -2012 standard. The mechanical properties of the weld joint with larger heat input were slightly higher than those with smaller heat input. The hardened tendency of SX780CF is small, however, the steel with the thickness of 60 mm needs to be preheated at more than 112°C. Comprehensive comparison shows that the submerged arc welding method with larger heat input has better efficiency and cost advantage, and it is worthy of promotion in hydropower project.","PeriodicalId":398842,"journal":{"name":"International Journal of Mechanical Engineering and Applications","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMEA.20190704.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
SX780CF is a new type domestic high strength low alloy (HSLA) steel with tensile strength of 800 MPa, which was used firstly for pressure pipes in the hydropower unit. In order to improve the efficiency, SX780CF is generally welded by submerged arc welding (SAW), and a kind of special intelligent welding machine for large-scale pressure steel pipe was adopted, which can realize intelligent mechanized grouping and automatic welding in tunnel. In this paper, two different levels of heat input were used to weld SX780CF. The weldability of two joints was analyzed, the mechanical properties of the joints were measured, and the hardness distribution of the joints was tested. Meanwhile, the microstructure was observed. The results show that the properties of these joints welded by two different levels of heat input could satisfy the demand of the GB 50766 -2012 standard. The mechanical properties of the weld joint with larger heat input were slightly higher than those with smaller heat input. The hardened tendency of SX780CF is small, however, the steel with the thickness of 60 mm needs to be preheated at more than 112°C. Comprehensive comparison shows that the submerged arc welding method with larger heat input has better efficiency and cost advantage, and it is worthy of promotion in hydropower project.