Analytical Modeling of a Multifunctional Segmented Lithium Ion Battery Unimorph Actuator

Cody Gonzalez, Jun Ma, M. Frecker, C. Rahn
{"title":"Analytical Modeling of a Multifunctional Segmented Lithium Ion Battery Unimorph Actuator","authors":"Cody Gonzalez, Jun Ma, M. Frecker, C. Rahn","doi":"10.1115/SMASIS2018-8123","DOIUrl":null,"url":null,"abstract":"Silicon anodes in lithium ion batteries have high theoretical capacity and large volumetric expansion. In this paper, both characteristics are used in a segmented unimorph actuator consisting of several Si composite anodes on a copper current collector. Each unimorph segment is self-actuating during discharge and the discharge power can be provided to external circuits. With no external forces and zero current draw, the unimorph segments will maintain their actuated shape. Stress-potential coupling allows for the unimorph actuator to be self-sensing because bending changes the anodes’ potential. An analytical model is derived from a superposition of pure bending and extensional deformation forces and moments induced by the cycling of a Si anode. An approximately linear relationship between axial strain and state of charge of the anode drives the bending displacement of the unimorph. The segmented device consists of electrically insulated and individually controlled segments of the Si-coated copper foil to allow for variable curvature throughout the length of the beam. The model predicts the free deflection along the length of the beam and the blocked force. Tip deflection and blocked force are shown for a range of parameters including segment thicknesses, beam length, number of segments, and state of charge. The potential applications of this device include soft robots and dexterous 3D grippers.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/SMASIS2018-8123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Silicon anodes in lithium ion batteries have high theoretical capacity and large volumetric expansion. In this paper, both characteristics are used in a segmented unimorph actuator consisting of several Si composite anodes on a copper current collector. Each unimorph segment is self-actuating during discharge and the discharge power can be provided to external circuits. With no external forces and zero current draw, the unimorph segments will maintain their actuated shape. Stress-potential coupling allows for the unimorph actuator to be self-sensing because bending changes the anodes’ potential. An analytical model is derived from a superposition of pure bending and extensional deformation forces and moments induced by the cycling of a Si anode. An approximately linear relationship between axial strain and state of charge of the anode drives the bending displacement of the unimorph. The segmented device consists of electrically insulated and individually controlled segments of the Si-coated copper foil to allow for variable curvature throughout the length of the beam. The model predicts the free deflection along the length of the beam and the blocked force. Tip deflection and blocked force are shown for a range of parameters including segment thicknesses, beam length, number of segments, and state of charge. The potential applications of this device include soft robots and dexterous 3D grippers.
一种多功能分段式锂离子电池单晶执行器的分析建模
锂离子电池中硅阳极具有理论容量高、体积膨胀大的特点。在本文中,这两种特性都被用于在铜集流器上由几个硅复合阳极组成的分段单晶圆致动器中。各单晶片在放电时自致动,放电功率可提供给外部电路。在没有外力和零电流的情况下,均形段将保持其驱动形状。由于弯曲改变了阳极的电位,因此应力-电位耦合允许均匀晶圆执行器具有自传感功能。从硅阳极循环引起的纯弯曲和拉伸变形力和力矩的叠加中导出了一个解析模型。轴向应变与阳极荷电状态之间的近似线性关系驱动了均匀晶片的弯曲位移。分段装置由电绝缘和单独控制的硅涂层铜箔部分组成,以允许在整个光束长度上可变曲率。该模型预测了沿梁长度方向的自由挠度和阻挡力。尖端偏转和阻塞力显示了一系列参数,包括段的厚度,梁的长度,段的数量,和电荷的状态。该装置的潜在应用包括软体机器人和灵巧的3D抓取器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信