{"title":"Advanced statistical and adaptive threshold techniques for moving object detection and segmentation","authors":"L. Christodoulou, T. Kasparis, Oge Marques","doi":"10.1109/ICDSP.2011.6004875","DOIUrl":null,"url":null,"abstract":"The current research project proposes advanced statistical and adaptive threshold techniques for video object detection and segmentation. We present new statistical adaptive threshold techniques to show the advantages, and how these algorithms overcome the limitations and the technical challenges for object motion detection. The algorithm utilizes statistical quantities such as mean, standard deviation, and variance to define a new adaptive and automatic threshold based on two-frame and three-frame differencing. The proposed algorithms were compared with classic statistical thresholding methods on a testing video for human motion detection, and the experimental results show the effectiveness of the algorithms. Furthermore this research shows an evaluation and comparison among all statistical and adaptive algorithms and proves the benefits of the proposed algorithm.","PeriodicalId":360702,"journal":{"name":"2011 17th International Conference on Digital Signal Processing (DSP)","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 17th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6004875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
The current research project proposes advanced statistical and adaptive threshold techniques for video object detection and segmentation. We present new statistical adaptive threshold techniques to show the advantages, and how these algorithms overcome the limitations and the technical challenges for object motion detection. The algorithm utilizes statistical quantities such as mean, standard deviation, and variance to define a new adaptive and automatic threshold based on two-frame and three-frame differencing. The proposed algorithms were compared with classic statistical thresholding methods on a testing video for human motion detection, and the experimental results show the effectiveness of the algorithms. Furthermore this research shows an evaluation and comparison among all statistical and adaptive algorithms and proves the benefits of the proposed algorithm.