A Machine Learning approach for Sentiment Analysis for Italian Reviews in Healthcare

Luca Bacco, Andrea Cimino, L. Paulon, M. Merone, F. Dell’Orletta
{"title":"A Machine Learning approach for Sentiment Analysis for Italian Reviews in Healthcare","authors":"Luca Bacco, Andrea Cimino, L. Paulon, M. Merone, F. Dell’Orletta","doi":"10.4000/books.aaccademia.8225","DOIUrl":null,"url":null,"abstract":"In this paper, we present our approach to the task of binary sentiment classification for Italian reviews in healthcare domain. We first collected a new dataset for such domain. Then, we compared the results obtained by two different systems, one including a Support Vector Machine and one with BERT. For the first one, we linguistic pre–processed the dataset to extract hand-crafted features exploited by the classifier. For the second one, we oversampled the dataset to achieve better results. Our results show that the SVMbased system, without the worry of having to oversample, has better performance than the BERT-based one, achieving an F1-score of 91.21%.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/books.aaccademia.8225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present our approach to the task of binary sentiment classification for Italian reviews in healthcare domain. We first collected a new dataset for such domain. Then, we compared the results obtained by two different systems, one including a Support Vector Machine and one with BERT. For the first one, we linguistic pre–processed the dataset to extract hand-crafted features exploited by the classifier. For the second one, we oversampled the dataset to achieve better results. Our results show that the SVMbased system, without the worry of having to oversample, has better performance than the BERT-based one, achieving an F1-score of 91.21%.
医疗保健领域意大利语评论情感分析的机器学习方法
在本文中,我们提出了我们的方法来二元情感分类任务的意大利评论在医疗保健领域。我们首先为该领域收集了一个新的数据集。然后,我们比较了两种不同系统的结果,一种是包含支持向量机的系统,一种是包含BERT的系统。对于第一个,我们对数据集进行语言预处理,以提取分类器利用的手工特征。对于第二个,我们对数据集进行过采样以获得更好的结果。我们的研究结果表明,基于svm的系统在不需要过采样的情况下,比基于bert的系统有更好的性能,达到了91.21%的f1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信