Efficient Cloud Auto-Scaling with SLA Objective Using Q-Learning

Shay Horovitz, Yair Arian
{"title":"Efficient Cloud Auto-Scaling with SLA Objective Using Q-Learning","authors":"Shay Horovitz, Yair Arian","doi":"10.1109/FiCloud.2018.00020","DOIUrl":null,"url":null,"abstract":"Threshold based cloud auto-scaling is one of the most common methods used to scale cloud applications. A major drawback of this method is that the thresholds are set manually by the user in an ad hoc fashion, not optimally, and specially crafted for a specific application behavior, leading to SLA failures. We present Q-Threshold - A novel algorithm for adaptively and dynamically adjusting the thresholds with no need for user configuration while meeting SLA objectives. In this context we present new methods for improving reinforcement Q-Learning auto-scaling with faster convergence, reduced state space and reduced action space in a distributed cloud environment. We demonstrate the effectiveness of our methods both on simulations and on real applications.","PeriodicalId":174838,"journal":{"name":"2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FiCloud.2018.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Threshold based cloud auto-scaling is one of the most common methods used to scale cloud applications. A major drawback of this method is that the thresholds are set manually by the user in an ad hoc fashion, not optimally, and specially crafted for a specific application behavior, leading to SLA failures. We present Q-Threshold - A novel algorithm for adaptively and dynamically adjusting the thresholds with no need for user configuration while meeting SLA objectives. In this context we present new methods for improving reinforcement Q-Learning auto-scaling with faster convergence, reduced state space and reduced action space in a distributed cloud environment. We demonstrate the effectiveness of our methods both on simulations and on real applications.
利用q -学习实现SLA目标的高效云自动扩展
基于阈值的云自动扩展是用于扩展云应用程序的最常用方法之一。这种方法的一个主要缺点是,阈值是由用户以一种特别的方式手动设置的,不是最优的,而是针对特定的应用程序行为专门设计的,这会导致SLA失败。我们提出了一种新的Q-Threshold算法,可以自适应地动态调整阈值,而不需要用户配置,同时满足SLA目标。在这种情况下,我们提出了在分布式云环境中改进强化Q-Learning自动缩放的新方法,具有更快的收敛、更少的状态空间和更少的动作空间。我们在仿真和实际应用中都证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信