{"title":"A battery energy storage system based on a multilevel cascade PWM converter","authors":"H. Akagi, L. Maharjan","doi":"10.1109/COBEP.2009.5347594","DOIUrl":null,"url":null,"abstract":"This paper describes a 6.6-kV battery energy storage system based on a multilevel cascade PWM (pulse-width-modulation) converter with star configuration. It discusses design concepts with and without a line-frequency transformer for grid connection. The control system consists of SOC(state-of-charge)-balancing control and fault-tolerant control. The former is indispensable for effective utilization of battery energy while the latter is required for maintaining continuous operation during a converter-cell or battery-unit fault. A 200-V, 10-kW, 3.6-kWh laboratory system combining a three-phase cascade PWM converter with nine NiMH (Nickel-metal-hydride) battery units is designed, constructed, and tested to verify the validity and effectiveness of the proposed control system.","PeriodicalId":183864,"journal":{"name":"2009 Brazilian Power Electronics Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Brazilian Power Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COBEP.2009.5347594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
This paper describes a 6.6-kV battery energy storage system based on a multilevel cascade PWM (pulse-width-modulation) converter with star configuration. It discusses design concepts with and without a line-frequency transformer for grid connection. The control system consists of SOC(state-of-charge)-balancing control and fault-tolerant control. The former is indispensable for effective utilization of battery energy while the latter is required for maintaining continuous operation during a converter-cell or battery-unit fault. A 200-V, 10-kW, 3.6-kWh laboratory system combining a three-phase cascade PWM converter with nine NiMH (Nickel-metal-hydride) battery units is designed, constructed, and tested to verify the validity and effectiveness of the proposed control system.