LIPT: a lossless text transform to improve compression

F. Awan, A. Mukherjee
{"title":"LIPT: a lossless text transform to improve compression","authors":"F. Awan, A. Mukherjee","doi":"10.1109/ITCC.2001.918838","DOIUrl":null,"url":null,"abstract":"We propose an approach to develop a dictionary based reversible lossless text transformation, called LIFT (length index preserving transform), which can be applied to a source text to improve the existing algorithm's ability to compress. In LIFT, the length of the input word and the offset of the words in the dictionary are denoted with alphabets. Our encoding scheme makes use of the recurrence of same length words in the English language to create context in the transformed text that the entropy coders can exploit. LIFT also achieves some compression at the preprocessing stage and retains enough context and redundancy for the compression algorithms to give better results. Bzip2 with LIFT gives 5.24% improvement in average BPC over Bzip2 without LIPT, and PPMD with LIPT gives 4.46% improvement in average BPC over PPMD without LIFT, for our test corpus.","PeriodicalId":318295,"journal":{"name":"Proceedings International Conference on Information Technology: Coding and Computing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Information Technology: Coding and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2001.918838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

We propose an approach to develop a dictionary based reversible lossless text transformation, called LIFT (length index preserving transform), which can be applied to a source text to improve the existing algorithm's ability to compress. In LIFT, the length of the input word and the offset of the words in the dictionary are denoted with alphabets. Our encoding scheme makes use of the recurrence of same length words in the English language to create context in the transformed text that the entropy coders can exploit. LIFT also achieves some compression at the preprocessing stage and retains enough context and redundancy for the compression algorithms to give better results. Bzip2 with LIFT gives 5.24% improvement in average BPC over Bzip2 without LIPT, and PPMD with LIPT gives 4.46% improvement in average BPC over PPMD without LIFT, for our test corpus.
LIPT:一种改进压缩的无损文本转换
我们提出了一种基于字典的可逆无损文本转换的方法,称为LIFT(长度索引保持变换),它可以应用于源文本,以提高现有算法的压缩能力。在LIFT中,输入单词的长度和字典中单词的偏移量用字母表示。我们的编码方案利用英语中相同长度单词的重复出现来在转换后的文本中创建上下文,熵编码器可以利用这些上下文。LIFT还在预处理阶段实现了一些压缩,并为压缩算法保留了足够的上下文和冗余,以获得更好的结果。对于我们的测试语料库,带有LIFT的Bzip2比没有LIPT的Bzip2的平均BPC提高了5.24%,而带有LIPT的PPMD比没有LIFT的PPMD的平均BPC提高了4.46%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信