Extremely Sparse Deep Learning Using Inception Modules with Dropfilters

Woo-Young Kang, Kyung-Wha Park, Byoung-Tak Zhang
{"title":"Extremely Sparse Deep Learning Using Inception Modules with Dropfilters","authors":"Woo-Young Kang, Kyung-Wha Park, Byoung-Tak Zhang","doi":"10.1109/ICDAR.2017.80","DOIUrl":null,"url":null,"abstract":"This paper reports a successful application of highly sparse convolutional network model for offline handwritten character recognition. The model makes use of spatial dropout techniques named dropfilters for sparsifying the inception modules in GoogLeNet, resulting in extremely sparse deep networks. The model is industry-deployable regarding model size and performance, which trained by a handwritten dataset of 520 classes and 260,000 Hangul(Korean) characters for tablet PCs and smartphones. The proposed model obtained significant improvement in recognition performance while the number of parameters is much smaller than that of the LeNet, a classical sparse convolutional network. We also evaluated the dropfiltered inception networks on the handwritten Hangul dataset and achieved 3.275% higher recognition accuracy with approximately three times fewer parameters than a deep network based on LeNet structure without dropfilters.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"33 2 Pt 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports a successful application of highly sparse convolutional network model for offline handwritten character recognition. The model makes use of spatial dropout techniques named dropfilters for sparsifying the inception modules in GoogLeNet, resulting in extremely sparse deep networks. The model is industry-deployable regarding model size and performance, which trained by a handwritten dataset of 520 classes and 260,000 Hangul(Korean) characters for tablet PCs and smartphones. The proposed model obtained significant improvement in recognition performance while the number of parameters is much smaller than that of the LeNet, a classical sparse convolutional network. We also evaluated the dropfiltered inception networks on the handwritten Hangul dataset and achieved 3.275% higher recognition accuracy with approximately three times fewer parameters than a deep network based on LeNet structure without dropfilters.
极其稀疏的深度学习使用初始模块与Dropfilters
本文报道了高度稀疏卷积网络模型在离线手写字符识别中的成功应用。该模型利用名为dropfilters的空间dropout技术对GoogLeNet中的初始模块进行稀疏化,从而得到极其稀疏的深度网络。该模型通过平板电脑和智能手机的520个类别和26万个韩文字符的手写数据集进行训练,在模型大小和性能方面可以实现工业部署。该模型在参数数量远小于经典稀疏卷积网络LeNet的情况下,显著提高了识别性能。我们还在手写韩文数据集上评估了dropfilter初始网络,与基于LeNet结构的深度网络相比,在参数减少约三倍的情况下,识别准确率提高了3.275%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信