{"title":"Iterative cosparse projection algorithms for the recovery of cosparse vectors","authors":"R. Giryes, Sangnam Nam, R. Gribonval, M. Davies","doi":"10.5281/ZENODO.42621","DOIUrl":null,"url":null,"abstract":"Recently, a cosparse analysis model was introduced as an alternative to the standard sparse synthesis model. This model was shown to yield uniqueness guarantees in the context of linear inverse problems, and a new reconstruction algorithm was provided, showing improved performance compared to analysis ℓ1 optimization. In this work we pursue the parallel between the two models and propose a new family of algorithms mimicking the family of Iterative Hard Thresholding algorithms, but for the cosparse analysis model. We provide performance guarantees for algorithms from this family under a Restricted Isometry Property adapted to the context of analysis models, and we demonstrate the performance of the algorithms on simulations.","PeriodicalId":331889,"journal":{"name":"2011 19th European Signal Processing Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Recently, a cosparse analysis model was introduced as an alternative to the standard sparse synthesis model. This model was shown to yield uniqueness guarantees in the context of linear inverse problems, and a new reconstruction algorithm was provided, showing improved performance compared to analysis ℓ1 optimization. In this work we pursue the parallel between the two models and propose a new family of algorithms mimicking the family of Iterative Hard Thresholding algorithms, but for the cosparse analysis model. We provide performance guarantees for algorithms from this family under a Restricted Isometry Property adapted to the context of analysis models, and we demonstrate the performance of the algorithms on simulations.