Understanding hot cracking of steels during rapid solidification: an ICME approach

Fuyao Yan, Jia-Yi Yan, D. Linder
{"title":"Understanding hot cracking of steels during rapid solidification: an ICME approach","authors":"Fuyao Yan, Jia-Yi Yan, D. Linder","doi":"10.3390/IEC2M-09254","DOIUrl":null,"url":null,"abstract":"Cracking is a major problem for some types of steel during additive manufacturing. Non-equilibrium kinetics of rapid solidification and solid-solid phase transformations are critical in determining cracking susceptibility. Previous studies correlate hot cracking susceptibility to solidification sequence, and therefore composition, empirically. In this study, an Integrated Computational Materials Engineering (ICME) approach is used to provide a more mechanistic and quantitative understanding of hot cracking susceptibility of a number of steels in relation to the peritectic reaction and evolution of delta ferrite during solidification. In this presentation, the application of ICME and hot cracking susceptibility predictions to alloy design for additive manufacturing are discussed.","PeriodicalId":429720,"journal":{"name":"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals","volume":"328 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/IEC2M-09254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cracking is a major problem for some types of steel during additive manufacturing. Non-equilibrium kinetics of rapid solidification and solid-solid phase transformations are critical in determining cracking susceptibility. Previous studies correlate hot cracking susceptibility to solidification sequence, and therefore composition, empirically. In this study, an Integrated Computational Materials Engineering (ICME) approach is used to provide a more mechanistic and quantitative understanding of hot cracking susceptibility of a number of steels in relation to the peritectic reaction and evolution of delta ferrite during solidification. In this presentation, the application of ICME and hot cracking susceptibility predictions to alloy design for additive manufacturing are discussed.
理解钢在快速凝固过程中的热裂:一种ICME方法
裂纹是增材制造过程中某些类型钢材的主要问题。快速凝固和固-固相变的非平衡动力学是决定开裂敏感性的关键。以前的研究将热裂敏感性与凝固顺序联系起来,因此,经验地组成。在这项研究中,综合计算材料工程(ICME)的方法被用于提供一个更机械和定量的理解一些钢的热裂敏感性与凝固过程中的包晶反应和δ铁素体的演变有关。在本报告中,讨论了ICME和热裂敏感性预测在增材制造合金设计中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信