{"title":"17.10 A 318-to-370GHz standing-wave 2D phased array in 0.13µm BiCMOS","authors":"Hossein Jalili, O. Momeni","doi":"10.1109/ISSCC.2017.7870385","DOIUrl":null,"url":null,"abstract":"Fully integrated implementation of mm-wave/THz radiators and phased arrays presents new potentials for applications like spectroscopy, imaging, and high data-rate communication. These applications demand sufficient radiated power, wide frequency range, and variable phase shifting between sources to perform beam steering. Limited power generation capability of transistors close to the maximum oscillation frequency (fmax) of available silicon processes in addition to the poor quality factor of varactors makes realizing these requirements particularly challenging. Harmonic oscillators are often coupled together in arrays to boost the output power and steer the radiation beam [1–6]. The coupling elements along with varactors used for frequency tuning add loss and parasitics to the circuit and significantly reduce the output power, operation frequency, and tuning range at mm-wave/THz frequencies. In this work, we implemented a standing-wave (SW) structure that overcomes these challenges to achieve broadband frequency tuning, wide beam steering and high power radiation at the same time.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Fully integrated implementation of mm-wave/THz radiators and phased arrays presents new potentials for applications like spectroscopy, imaging, and high data-rate communication. These applications demand sufficient radiated power, wide frequency range, and variable phase shifting between sources to perform beam steering. Limited power generation capability of transistors close to the maximum oscillation frequency (fmax) of available silicon processes in addition to the poor quality factor of varactors makes realizing these requirements particularly challenging. Harmonic oscillators are often coupled together in arrays to boost the output power and steer the radiation beam [1–6]. The coupling elements along with varactors used for frequency tuning add loss and parasitics to the circuit and significantly reduce the output power, operation frequency, and tuning range at mm-wave/THz frequencies. In this work, we implemented a standing-wave (SW) structure that overcomes these challenges to achieve broadband frequency tuning, wide beam steering and high power radiation at the same time.